• Title/Summary/Keyword: strain profile

Search Result 295, Processing Time 0.028 seconds

Isolation of Methanol-assimilating Candida boidinii YF-3 and Production of Single Cell Protein (메탄올 자화성 Candida boidinii YF-3의 분리와 단세포 단백질(SCP)의 생산)

  • Lee, Ke-Ho;Bae, Sung-Mee
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.324-330
    • /
    • 1987
  • A large number of methanol-assimilating yeasts and bacteria were isolated from samples of soil, sewage, decomposed milk and spoiled sweet-radish pickles. Among the yeasts, one strain was selected and identified as a strain of Candida boidinii. In 1% (v/v) methanol Candida boidinii YF-3 grew well and could grow in as much as 5%. This yeast required boitin for grwoth. Maximum growth was observed at $30^{\circ}C$ and pH 6 in a semisynthetic medium. The productivity was 2.72g dry cells per liter in batch culture with 1%(v/v) methanol and the cell yield for methanol was $0.39\;gg^{-1}$. The specific growth rate was $0.11\;h^{-1}$ and the generation time was 6.4 hours. The protein content of the cell was 45.5% and total nucleic acid content was 5.9%. The amino acid profile was as good as FAO standard for food protein.

  • PDF

Potential Probiotic Characteristics and Safety Assessment of Lactobacillus rhamnosus SKG34 Isolated from Sumbawa Mare's Milk

  • Sujaya, I Nengah;Suwardana, Gede Ngurah Rsi;Gotoh, Kazuyoshi;Sumardika, I Wayan;Nocianitri, Komang Ayu;Sriwidyani, Ni Putu;Putra, I Wayan Gede Artawan Eka;Sakaguchi, Masakiyo;Fatmawati, Ni Nengah Dwi
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.51-62
    • /
    • 2022
  • Lactobacillus rhamnosus SKG34 (LrSKG34), a potential probiotic strain, was successfully isolated from Sumbawa Mare's milk. Our previous studies showed that the strain is resistant to gastrointestinal conditions, possesses antioxidant activity, and lowers blood cholesterol levels. Further clarification of the potential probiotic characteristics and safety assessment are necessary. This study aimed to evaluate the adhesion of LrSKG34 to Caco-2 cell monolayers and its effect on mucosal integrity in vitro. We also examined the LrSKG34 safety profile based on antimicrobial susceptibility testing, haemolytic activity determination, Caco-2 cell monolayer translocation evaluation, and in vivo investigation of the effect of LrSKG34 on the physiology, biochemical markers, and histopathological appearance of major organs in an animal model. LrSKG34 attached to Caco-2 cell monolayers and maintained mucosal integrity in vitro. The typical resistance of lactobacilli to ciprofloxacin, gentamicin, vancomycin, trimethoprim-sulfamethoxazole, and metronidazole was confirmed for LrSKG34. No haemolytic activity was observed on blood agar plates, and no LrSKG34 translocation was observed in Caco-2 cell monolayers. Administration of LrSKG34 to Sprague-Dawley rats did not adversely affect body weight. No abnormalities in hematological parameters, serum biochemistry levels, or histopathological structures of major organs were observed in LrSKG34-treated rats. Collectively, the results implicate LrSKG34 as a promising and potentially safe probiotic candidate for further development.

Nucleotide Sequence, Structural Investigation and Homology Modeling Studies of a Ca2+-independent α-amylase with Acidic pH-profile

  • Sajedi, Reza Hassan;Taghdir, Majid;Naderi-Manesh, Hossein;Khajeh, Khosro;Ranjbar, Bijan
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.315-324
    • /
    • 2007
  • The novel $\alpha$-amylase purified from locally isolated strain, Bacillus sp. KR-8104, (KRA) (Enzyme Microb Technol; 2005; 36: 666-671) is active in a wide range of pH. The enzyme maximum activity is at pH 4.0 and it retains 90% of activity at pH 3.5. The irreversible thermoinactivation patterns of KRA and the enzyme activity are not changed in the presence and absence of $Ca^{2+}$ and EDTA. Therefore, KRA acts as a $Ca^{2+}$-independent enzyme. Based on circular dichroism (CD) data from thermal unfolding of the enzyme recorded at 222 nm, addition of $Ca^{2+}$ and EDTA similar to its irreversible thermoinactivation, does not influence the thermal denaturation of the enzyme and its Tm. The amino acid sequence of KRA was obtained from the nucleotide sequencing of PCR products of encoding gene. The deduced amino acid sequence of the enzyme revealed a very high sequence homology to Bacillus amyloliquefaciens (BAA) (85% identity, 90% similarity) and Bacillus licheniformis $\alpha$-amylases (BLA) (81% identity, 88% similarity). To elucidate and understand these characteristics of the $\alpha$-amylase, a model of 3D structure of KRA was constructed using the crystal structure of the mutant of BLA as the platform and refined with a molecular dynamics (MD) simulation program. Interestingly enough, there is only one amino acid substitution for KRA in comparison with BLA and BAA in the region involved in the calcium-binding sites. On the other hand, there are many amino acid differences between BLA and KRA at the interface of A and B domains and around the metal triad and active site area. These alterations could have a role in stabilizing the native structure of the loop in the active site cleft and maintenance and stabilization of the putative metal triad-binding site. The amino acid differences at the active site cleft and around the catalytic residues might affect their pKa values and consequently shift its pH profile. In addition, the intrinsic fluorescence intensity of the enzyme at 350 nm does not show considerable change at pH 3.5-7.0.

NOx Formation Characteristics with Oxygen Enrichment in Nonpremixed Counterflow and Coflow Jet Flames (비예혼합 대향류 및 동축 제트화염에서 산소부화에 따른 NOx 생성특성)

  • Yoo, Byung-Hun;Hwang, Chul-Hong;Han, Ji-Woong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.169-174
    • /
    • 2004
  • The NOx emission characteristics with oxygen enrichment in nonpremixed counterflow and coflow jet flame of $CH_4$ fuel have been investigated numerically. A small amount of nitrogen is included in oxygen-enriched combustion, in order to consider the inevitable $N_2$ contamination by air infiltration. The results show that the initial increase of NO with increasing oxygen enrichment is due to increasing temperature and residence time, while its subsequent decrease above 75% oxygen is due to decreasing the consumption rate of nitrogen. When oxygen addition exceeds 30%, Thermal NO gradually becomes the dominant production pathway and Prompt NO becomes negative pathway for net NO production rate. It is also seen that Thermal NO plays an important role in NO reduction when strain rate increase in oxygen-enriched combustion. Finally, the results of EINOx with oxygen enrichment in coflow jet flame show the similar profile with those of conterflow flame. It is confirmed that, with leakage of 1% nitrogen in the oxidizer stream, the corresponding EINOx is eight times of that emitted from regular $CH_4$/Air flame.

  • PDF

Free vibration of tapered BFGM beams using an efficient shear deformable finite element model

  • Nguyen, Dinh Kien;Tran, Thi Thom
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.363-377
    • /
    • 2018
  • An efficient and free of shear locking finite element model is developed and employed to study free vibration of tapered bidirectional functionally graded material (BFGM) beams. The beam material is assumed to be formed from four distinct constituent materials whose volume fraction continuously varies along the longitudinal and thickness directions by power-law functions. The finite element formulation based on the first-order shear deformation theory is derived by using hierarchical functions to interpolate the displacement field. In order to improve efficiency and accuracy of the formulation, the shear strain is constrained to constant and the exact variation of the cross-sectional profile is employed to compute the element stiffness and mass matrices. A comprehensive parametric study is carried out to highlight the influence of the material distribution, the taper and aspect ratios as well as the boundary conditions on the vibration characteristics. Numerical investigation reveals that the proposed model is efficient, and it is capable to evaluate the natural frequencies of BFGM beams by using a small number of the elements. It is also shown that the effect of the taper ratio on the fundamental frequency of the BFGM beams is significantly influenced by the boundary conditions. The present results are of benefit to optimum design of tapered FGM beam structures.

Manufacturing and Characteristics Analysis of PU/MWNT Composite Film for Forming (발포용 PU/MWNT 복합필름의 제조와 특성분석)

  • Park, Jun-Hyeong;Kim, Jeong-Hyun;Kim, Seung-Jin
    • Textile Coloration and Finishing
    • /
    • v.22 no.4
    • /
    • pp.362-372
    • /
    • 2010
  • This paper surveys the physical properties of the multiwall carbon nanotube (MWNT) and polyurethane composite film for improvement of mechanical properties and electrical characteristics. The modification of MWNT was carried out by acid treatment with nitric and sulphuric acid mixed solution, and then followed by thermal treatment for enhancing MWNT dispersion with polyurethane. This modified MWNT was mixed with polyurethane by changing the loading content of MWNT and dispersion time under the dimethylformamide solution in the ultrasonic wave apparatus. Various physical characteristics of the modified PU/MWNT films were measured and analyzed in terms of the loading content and dispersion time. The maximum absorbance of the PU/MWNT films were observed with the 2wt% loading at dispersion times of 2 and 24 hour, respectively. The minimum electrical volume resistivity of PU/MWNT film was shown at the loading content of 0.5wt% or more irrespective of dispersion treating time. However the optimum condition was assumed to 2wt% loading at dispersion time of 2 hours by assessing the surface profile of the film using video microscope. The breaking stress and strain of the PU/MWNT film decreased with increasing loading content, but no change of physical properties was shown with increasing in dispersion time.

Understanding of Extracellular Fumarate Induced dctA Gene Expression Profile Using GFP Reporter (GFP 리포터를 이용한 외부 푸마르산 유도 dctA 유전자 발현 특성 파악)

  • Irisappan, Ganesh;Ravikumar, Sambandam;Kim, Joo-Han;Hong, Soon-Ho
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.174-178
    • /
    • 2011
  • In Escherichia coli, DcuS/R two-component system controls fumarate import and utilization related gene expression. To understand the dynamic response of the bacterium DcuS/R two-component system with respect to fumarate concentrations, DcuS/R induced dctA promoter was integrated with GFP reporter protein. Expression monitoring study using recombinant strain showed that dctA promoter was upregulated with 1 mM of fumarate in M9 minimal medium.

Purification and Properties of Cyclodextrin Glucanotrnsferase Synthesizing $2-O-{\alpha}-D-Glucopyranosyl{\;}_{L}-Ascorbic$ Acid from Paenibacillus sp. JB-13

  • Bae, Kyung-Mi;Kim, Sung-Koo;Kong, In-Soo;Jun, Hong-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.242-250
    • /
    • 2001
  • A Gram-positive bacterium (strain JB-13) that was isolated from soil as a producer of cyclodextrin glucanotransferase (CGTase) [EC 2.4.1.19] was identified as Panibacillus sp. JB-13. This CGTase could catalyze the transglucosylation reaction from soluble starch to L-ascorbic acid (AA). A main product formed by this enzyme with ${\alpha}-glucosidase$ was identified as $2-O-{\alpha}-D-glucopyranosyl{\;}_{L}-ascorbic$ acid (AA-2G) by the HPLC profile and the elemental analysis. CGTase was purified to homogeneity using ammonium sulfate fractionation, ion-exchange chromatography on DEAE-Seohadex A-50, and gel chromatography on Sephacryl S-200HR. The molecular weight was determined to be 66,000 by both gel chromatography and SDS-PAGE. The isoelectric point of the purified enzyme was 5.3. The optimum pH and temperature was PH 7.0 and $45^{\circ}C$ respectively. The enzyme was stable in the range of pH 6-9 and at temperatures of $75{\circ}C$ or less in the presence of 15 mM ${CaCl_2}.\;{Hg^2+},\;{Mn^+2},{Ag^+},\;and\;{Cu^2+}$ all strongly inhibited the enzyme's activity.

  • PDF

An empirical formulation to predict maximum deformation of blast wall under explosion

  • Kim, Do Kyun;Ng, William Chin Kuan;Hwang, Oeju
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.237-245
    • /
    • 2018
  • This study proposes an empirical formulation to predict the maximum deformation of offshore blast wall structure that is subjected to impact loading caused by hydrocarbon explosion. The blast wall model is assumed to be supported by a simply-supported boundary condition and corrugated panel is modelled. In total, 1,620 cases of LS-DYNA simulations were conducted to predict the maximum deformation of blast wall, and they were then used as input data for the development of the empirical formulation by regression analysis. Stainless steel was employed as materials and the strain rate effect was also taken into account. For the development of empirical formulation, a wide range of parametric studies were conducted by considering the main design parameters for corrugated panel, such as geometric properties (corrugation angle, breadth, height and thickness) and load profiles (peak pressure and time). In the case of the blast profile, idealised triangular shape is assumed. It is expected that the obtained empirical formulation will be useful for structural designers to predict maximum deformation of blast wall installed in offshore topside structures in the early design stage.

Flexural analysis of thermally actuated fiber reinforced shape memory polymer composite

  • Tiwari, Nilesh;Shaikh, A.A.
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.337-359
    • /
    • 2019
  • Shape Memory Polymer Composites (SMPC) have gained popularity over the last few decades due to its flexible shape memory behaviour over wide range of strains and temperatures. In this paper, non-linear bending analysis has been carried out for SMPC beam under the application of uniformly distributed transverse load (UDL). Simplified C0 continuity Finite Element Method (FEM) based on Higher Order Shear Deformation Theory (HSDT) has been adopted for flexural analysis of SMPC. The numerical solutions are obtained by iterative Newton Raphson method. Material properties of SMPC with Shape Memory Polymer (SMP) as matrix and carbon fibre as reinforcements, have been calculated by theory of volume averaging. Effect of temperature on SMPC has been evaluated for numerous parameters for instance number of layers, aspect ratio, boundary conditions, volume fraction of carbon fiber and laminate stacking orientation. Moreover, deflection profile over unit length and behavior of stresses across thickness are also presented to elaborate the effect of glass transition temperature (Tg). Present study provides detailed explanation on effect of different parameters on the bending of SMPC beam for large strain over a broad span of temperature from 273-373K, which encompasses glass transition region of SMPC.