• Title/Summary/Keyword: strain penetration

Search Result 147, Processing Time 0.033 seconds

A Study on the Steps of Shear Deformations Behavior of Fine-Blanking Process (Fine-Blanking시 전단 단계별 변형 거동에 관한 연구)

  • 이종구;박원규
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.26-33
    • /
    • 2002
  • One characteristic of Fine-Blanking is that the size and the direction of stress and strain are very complex in the plastic flow according to the condition of blanking. Especially, they are affected by the clearance of punch and die, by the force of blanking holder and by the force of counter punch. The purpose of this research is to how the deformation behavior in shear zone more clearly, based on Green & Cauch's large deformation theory. The deformation behavior and cracks were investigated in each step of shear, according to punch penetration increase, the use of V-indenter ring and the hardness of materials. This research found that the transforming behavior was the same as pure discretion and the cracks could be prevented when hardness is low.

Development and application of FEM/GEM program for evaluating formability of stamping dies (스탬핑 금형의 성형성 평가를 위한 유한요소/기하학힘평형법 프로그램 개발과 응용)

  • Kim, J.P.;Keum, Y.T.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.80-93
    • /
    • 1996
  • A 2-dimensional FEM/GEM program was developed under the plane strain assumption using linear line elements for analyzing stretch/draw forming operations of an arbitrarily shaped draw-die. FEM formulation adopted a new algorithm for solving force equilibrium as well as non-penetration condition simultaneously. Also, a rigid-viscoplastic material model with Hill's normal anisotropic yield condition and rate-sensitive hardening law is assumed, along with the Coulomb friction law in the contact regions. For the case of numerical divergence at nearly final forming stages, geometric force equilibrium method(GEM) is also introduced. The developed program was tested by simulating the forming processes of cylindrical punch/open die, and the drawing processes of automotive oilpan and hood inner panel in order to verify the usefulness and validity of FEM/GEM formulation. The numerical simulation verified the validity and robustness of developed program.

  • PDF

Sensitivity Analysis to Finite Element Analysis Program to Evaluate Structural Integrity of a Spent Nuclear Fuel Transport Cask Subjected to Extreme Impact Loads (극한 충격하중이 작용하는 사용후핵연료 운반용기의 구조 건전성을 평가하는 유한요소해석 프로그램에 대한 민감도 분석)

  • Jong-Sung Kim;Min-Sik Cha
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.50-53
    • /
    • 2022
  • To investigate the validity of the finite element analysis program to assess structural integrity of a spent nuclear fuel transport cask subjected to extreme impact loads, structural integrity of the cask for the case of an aircraft engine collision is evaluated using three FE analysis programs: Autodyn, Speed and ABAQUS explicit version. As a result of all analyses, it is confirmed that no penetration occurred in the cask wall. Even though the different programs are used, it is identified that there are insignificant differences in the FE analysis variables such as von Mises effective stress and equivalent plastic strain among the programs.

Development of Drug Candidates based on Natural Products Against COVID-19 (천연식물자원 활용 코로나19 억제 치료제 개발)

  • Se Chan Kang
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.3-3
    • /
    • 2021
  • The ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has not only influenced over 1.26 billion people but also caused 2.77 million deaths worldwide (as of March 28, 2021). The vaccination could be the most efficient strategy to prevent SARS-CoV-2 infection. However, the continuous emergence of novel variants such as VUI-202012/01 (United Kingdom) and 501.V2 (South Africa) raises huge concerns about the effectiveness of the vaccine designed to target the original virus strain. Since ancient times regardless of the East and West, the plants which refered in this presentation have been consumed not only as food but also as a natural medicine to treat diverse diseases including infectious diseases. Importantly, these plants contain secondary metabolites that display antiviral activity involved in the inhibition of viral adsorption, penetration, and replication. Also, plant-derived natural medicines are expected to have a wider range of efficacy and fewer side effects than synthetic medicine, discovering novel plant-based viral agents would be a promising strategy to fight against SARS-CoV-2.

  • PDF

A Study on the Shear Modulus of Weathered Granite Soil by Pressuremeter Tests (공내재하시험을 이용한 화강풍화토의 전단계수 산정)

  • Kim, Jong-Soo;Lee, Kyu-Hwan;Lee, Chang-Tok;Lee, Song
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.95-106
    • /
    • 1997
  • A pressuremeter is an expandable tube which is placed in the soil, and then expanded under controlled condition against the soil. From this test a pressure expansion curve of the soil can be obtained. However soil disturbance during the test has significant influence on the results of tests. A general governing equation for pressuremeter test can be theoretically derived on the basis of the hyperbolic soil model and the cavity expansion theory. The curve fitting technique was used to establish the pressure-strain curve without disturbance of soil during testing. This interpretation makes use of both the loading and unloading portions of the test. An interpretation methodology is described and illustrated with pressuremeter test data carried out in the weathered granitic soil to estimate initial shear modulus. Standard penetration test is a very common site investigation technique in Korea. Therefore the blow counts of standard penetration test are discussed by comparing them with initial shear modulus.

  • PDF

Case Study of Correlation between the SPT-N Value and PMT Results Performed on Weathered Granite Zone in Korea (국내 화강 풍화대 지반의 표준관입시험 N 값과 프레셔미터시험 결과의 상관관계에 대한 사례 분석)

  • Lee, Seung-Hwan;Baek, Sung-Ha;Song, Young-Woo;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.15-24
    • /
    • 2019
  • Weathered granite zone exists in most regions of Korea and it is often used as a bearing stratum of geotechnical structures. So it is very important to estimate the characteristics of weathered granite zone. SPT (Standard penetration test) is usually performed to investigate the characteristics of the weathered zone because undisturbed samples suitable for laboratory testing are hardly retrieved. PMT (Pressuremeter test) can reliably evaluate the in situ stress-strain behavior, but it is rarely conducted because of their high cost and time-consuming procedure. In this study, the correlation between the SPT-N values and the PMT results, obtained from the weathered granite zone, was analyzed. Empirical equations for pressuremeter modulus (Em) and limit pressure (PL) were suggested and compared with the previous research.

MoJMJ1, Encoding a Histone Demethylase Containing JmjC Domain, Is Required for Pathogenic Development of the Rice Blast Fungus, Magnaporthe oryzae

  • Huh, Aram;Dubey, Akanksha;Kim, Seongbeom;Jeon, Junhyun;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.193-205
    • /
    • 2017
  • Histone methylation plays important roles in regulating chromatin dynamics and transcription in eukaryotes. Implication of histone modifications in fungal pathogenesis is, however, beginning to emerge. Here, we report identification and functional analysis of a putative JmjC-domain-containing histone demethylase in Magnaporthe oryzae. Through bioinformatics analysis, we identified seven genes, which encode putative histone demethylases containing JmjC domain. Deletion of one gene, MoJMJ1, belonging to JARID group, resulted in defects in vegetative growth, asexual reproduction, appressorium formation as well as invasive growth in the fungus. Western blot analysis showed that global H3K4me3 level increased in the deletion mutant, compared to wild-type strain, indicating histone demethylase activity of MoJMJ1. Introduction of MoJMJ1 gene into ${\Delta}Mojmj1$ restored defects in pre-penetration developments including appressorium formation, indicating the importance of histone demethylation through MoJMJ1 during infection-specific morphogenesis. However, defects in penetration and invasive growth were not complemented. We discuss such incomplete complementation in detail here. Our work on MoJMJ1 provides insights into H3K4me3-mediated regulation of infection-specific development in the plant pathogenic fungus.

Analysis of High Velocity Impact on SFRC Panels Using ABAQUS (ABAQUS를 이용한 강섬유보강 콘크리트 패널의 고속 충돌 거동 해석)

  • Son, Seok-Kwon;Jang, Seok-Joon;Yun, Hyun-Do;Kim, Yong-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.141-148
    • /
    • 2016
  • This paper employed finite element method (FEM) to study the dynamic response of Steel Fiber-Reinforced Concrete(SFRC) panels subjected to impact loading by spherical projectiles. The material properties and non-linear stress-strain curves of SFRC were obtained by compression test and flexural test. Various parametric studies, such as the effect of fiber volume fraction and thickness of panels, are made and numerical analyses are compared with experiments conducted. It is shown that protective performance of concrete panels will be improved by adding steel fiber. Area loss rates and weight loss rates are decreased with increasing fiber volume fraction. Also, penetration modes can be expected by FEM, showing well agreement with experiment. Results can be applied for designing the protection of military structures and other facilities against high-velocity projectiles.

Different Mechanisms of Induced Systemic Resistance and Systemic Acquired Resistance Against Colletotrichum orbiculare on the Leaves of Cucumber Plants

  • Jeun, Yong-Chull;Park, Kyung-Seok;Kim, Choong-Hoe
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2001
  • Defense mechanisms against anthracnose disease caused by Colletotrichum orbiculare on the leaf surface of cucumber plants after pre-treatment with plant growth promoting rhizobacteria(PGPR), amino salicylic acid(ASA) or C. orbiculare were compared using a fluorescence microscope. Induced systemic resistance was mediated by the pre-inoculation in the root system with PGPR strain Bacillus amylolquefaciens EXTN-1 that showed direct antifungal activity to C. gloeosporioides and C. orbiculare. Also, systemic acquired resistance was triggered by the pre-treatments on the bottom leaves with amino salicylic acid or conidial suspension of C. orbiculare. The protection values on the leaves expressing SAR were higher compared to those expressing ISR. After pre-inoculation with PGPR strains no change of the plants was found in phenotype, while necrosis or hypersensitive reaction(HR) was observed on the leaves of plants pre-treated with ASA or the pathogen. After challenge inoculation, inhibition of fungal growth was observed on the leaves expressing both ISR and SAR. HR was frequently observed at the penetration sites of both resistance-expressing leaves. Appressorium formation was dramatically reduced on the leaves of plants pre-treated with ASA, whereas EXTN-1 did not suppress the appressorium formation. ASA also more strongly inhibited the conidial germination than EXTN-1. Conversely, EXTN-1 significantly increased the frequency of callose formation at the penetration sites, but ASA did not. The defense mechanisms induced by C. orbiculare were similar to those by ASA. Based on these results it is suggested that resistance mechanisms on the leaf surface was different between on the cucumber leaves expressing ISR and SAR, resulting in the different protection values.

  • PDF

Studies on Skin Permeation with Polymer Micelles and the Cell Penetrating Peptide of Pyrus Serotina Var Stem Extracts

  • An, Gyu Min;Park, Su In;Kim, Min Gi;Heo, Soo Hyeon;Shin, Moon Sam
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.21-28
    • /
    • 2020
  • The stem extract from Pyrus serotina var has natural antioxidant ability, but the extraction method does not result in a soluble compound in cosmetic formulations. This study investigated the cosmetic efficacy of the Pyrus serotina var stem extract and its epidermis permeation ability when combined with polymer micelles and a cell penetrating peptide. The total concentration of polyphenol compounds was determined to be 103.1644 ± 1.38 mg/g in the ethanol extract and 78.97 ± 1.45 mg/g in the hydrothermal extract. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects were 55.94 ± 0.22% in the ethanol extract at 1,000 mg/L. Superoxide dismutase (SOD) activity rates were 104.05 ± 3.28% in the ethanol extract at 62.5 mg/L. The elastase inhibition rate was 67.21 ± 2.72% in the ethanol extract at 1,000 mg/L. An antimicrobial effect was observed in the Propionibacterium acnes strain. In the epidermal permeability experiment, it was confirmed that formulation of the polymer micelle containing the Pyrus serotina var stem extract and cell penetrating peptide (R6, hexa-D-arginine) showed small particle size and much better skin permeability. The cumulative amount of total Pyrus serotina var stem extract that penetrated to the skin over time increased over 24 hours in three formulations. The three formulations showed 51.61 ㎍/㎠ (Formulation 0), 75.97 ㎍/㎠ (Formulation 1) and 95.23 ㎍/㎠ (Formulation 2) skin penetration, respectively. Therefore, it was confirmed that the ethanol extracts of Pyrus serotina var stem showed good cosmetic efficacy and excellent epidermis permeation ability when combined with a polymer micelle and cell penetrating peptide. Thus, this extract has the potential to be used as a safe and natural cosmetic material in the future.