• 제목/요약/키워드: strain measurement sensor

검색결과 256건 처리시간 0.025초

투과형 EFPI 광섬유 센서를 이용한 변형률 및 온도의 측정 (Strain and Temperature Measurement using Transmission-type EFPI Optical Fiber Sensors)

  • 김상훈;이정주;허증수
    • 센서학회지
    • /
    • 제10권1호
    • /
    • pp.9-15
    • /
    • 2001
  • 외인성 패브리-페롯 간섭계(EFPI) 광섬유 센서는 민감도와 분해능이 우수하며, 다른 종류의 광섬유 센서에 비해 많은 장점을 가지고 있다. 하지만 EFPI 광섬유 센서는 단지 프린지 개수만을 계산하여 측정량을 얻기 때문에 측정 방향을 구별하기 어렵다. 본 논문에서는 측정방향의 구분을 위한 추가적인 기능과 기존의 EFPI 광섬유 센서와는 다른 측정 시스템을 갖는 투과형 외인성 패브리-페롯 간섭계(TEFPI) 광섬유 센서를 개발하였다. 그리고 이를 이용하여 변형률 및 온도를 측정하였다.

  • PDF

레이저 스페클을 이용한 재료 변형 측정 (Measurement of Material Deformation Using Laser Speckle)

  • 전문창;강기주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.688-694
    • /
    • 2002
  • As a tool for strain measurement to work with screw driven or hydraulic material test systems, in which mechanical vibration is inherent, SSDG(Speckle Strain/Displacement Gage), ESP(Electronic Speckle Photography) and its 3-dimension version SDSP are investigated for the theory and practical appliance. Through tension test of steel strips, their validity and shortcomings are examined. As the results, it has been shown that, although SSDG and ESP provide direct measurement of in-plane strain in one direction, they are so sensitive to the out-plane displacement. On the other hand, SDSP which is aided with DIC (Digital Image Correlation) technique to trace the movement of the speckles provides not only in-plane 2-dimensional displacement field, but also out-of-plane displacement simultaneously. However, because the DIC is time-consuming, not automated yet and it needs post-processing to evaluate strain from the displacement field, SDSP appears to be not adequate as a real time sensor.

  • PDF

Simultaneous active strain and ultrasonic measurement using fiber acoustic wave piezoelectric transducers

  • Lee, J.R.;Park, C.Y.;Kong, C.W.
    • Smart Structures and Systems
    • /
    • 제11권2호
    • /
    • pp.185-197
    • /
    • 2013
  • We developed a simultaneous strain measurement and damage detection technique using a pair of surface-mounted piezoelectric transducers and a fiber connecting them. This is a novel sensor configuration of the fiber acoustic wave (FAW) piezoelectric transducer. In this study, lead-zirconate-titanate (PZT) transducers are installed conventionally on a plate's surface, which is a technique used in many structural health monitoring studies. However, our PZTs are also connected with an optical fiber. A FAW and Lamb wave are simultaneously guided in the optical fiber and the structure, respectively. The dependency of the time-of-flight of the FAW on the applied strain is quantified for strain sensing. In our experimental results, the FAW exhibited excellent linear behavior and no hysteresis with respect to the change in strain. On the other hand, the well-known damage detection function of the surface-mounted PZT transducers was still available by monitoring the waveform change in the conventional Lamb wave ultrasonic path.

Zigbee 무선통신 네트워크 기반 변형측정 시스템 설계 및 개발 (Design and Development of Strain Measurement System Based on Zigbee Wireless Network)

  • 김상석;박장식;고석조;노희종
    • 한국전자통신학회논문지
    • /
    • 제7권3호
    • /
    • pp.585-590
    • /
    • 2012
  • 본 논문에서는 구조물의 안전한 관리를 위하여 진동현방식 센서를 이용하여 변형을 측정하고 Zigbee 무선 네트워크를 통하여 원격 모니터링할 수 있는 시스템을 구현하였다. 구현한 변형측정기는 진동현방식 센서를 구동하여 출력되는 신호의 주파수를 측정하여 변형을 계산하고, 변형 측정에 있어 요구되는 온도 보상을 위한 온도를 측정한다. 2축 가속도센서를 이용하여 변형의 방향을 측정할 수 있다. 개발한 변형측정기에는 보다 효율적인 모니터링을 위하여 유무선 통신 기능이 있다. 실험을 통하여 개발한 진동현방식 변형측정 시스템이 원격모니터링에 효과적임을 확인한다.

복합재 주 날개 모델의 변형률과 진동의 동시 측정 (Simultaneous Measurement of Strain and High Frequency Vibration of Composite Main Wing Model)

  • 송지용;윤혁진;박상욱;박상오;김천곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.185-189
    • /
    • 2005
  • For the simultaneous measurement of strain and vibration signal, a fiber Bragg grating sensor system with a dual demodulator was proposed. One demodulator using a tunable Fabry-Perot filter could measure low-frequency signal such as strain and the other demodulator using a coarse wavelength division multiplexer could detect high-frequency signal such as vibration signal using intensity demodulation method. In order to measure strain and vibration of the composite main wing model under static loading a real time monitoring program was developed. Also using intensity demodulation of CWDM, sensitivity and resolution at high frequency vibration were evaluated.

  • PDF

Innovative cable force monitoring of stay cables using piezoelectric dynamic strain responses

  • ;;이지용;신성우;김정태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.830-834
    • /
    • 2013
  • This study presents a method to monitor cable force of a long-span cable-stayed bridge using a smart piezoelectric sensor system. The following approaches are implemented in order to achieve the objective. Firstly, the method to utilize piezoelectric materials for the health monitoring of stay cables is presented. For strain measurement of a stay cable, a PZT-embedded smart skin is designed to overcome the difficulties of bonding PZT sensors directly on stay cables. Secondly, a piezoelectric strain monitoring system for stay cables is designed. For the operation of the sensor board, the Imote2 sensor platform is used to provide the computation, wireless communication and power supply units. The feasibility of the proposed monitoring system is then evaluated on a full-scale cable of a cable-stayed bridge.

  • PDF

Silicon Strain Gauge Load Cell for Weighting Disdrometer

  • Lee, Seon-Gil;Moon, Young-Soon;Son, Won-Ho;Sohn, Young-Ho;Choi, Sie-Young
    • 센서학회지
    • /
    • 제22권5호
    • /
    • pp.321-326
    • /
    • 2013
  • In this paper, the usability of a compact silicon strain gauge load cell in a weighting disdrometer for measuring the impact load of a falling raindrop is introduced for application in a multi-meteorological sensor. The silicon strain gauge load cell is based on the piezoresistive effect, which has a high linearity output from the momentum of the raindrop and the simplicity of signal processing. The weighting disdrometer shows a high sensitivity of 7.8 mV/g in static load measurement when the diaphragm thickness of the load cell is $250{\mu}m$.

블레이드 진동측정을 위한 스트레인 게이지 설치위치 최적화 (Optimal Placement of Strain Gauge for Vibration Measurement for Fan Blade)

  • 최병근
    • 한국소음진동공학회논문집
    • /
    • 제14권9호
    • /
    • pp.819-826
    • /
    • 2004
  • A multi-step optimum strategy for the selection of the locations and directions of strain gauges is proposed in this paper to capture at best the modal response of blade in a series of modes on fan blades. It is consist of three steps including two pass reduction step, genetic algorithm and fine optimization to find the locations-directions of strain gauges. The optimization is based upon the maximum signal-to-noise ratio(SNR) of measured strain values with respect to the inherent system measurement noise, the mispositioning of the gauge in location and gauge failure. Optimal gauge positions for a fan blade is analyzed to prove the effectiveness of the multi-step optimum methodology and to investigate the effects of the considering parameters such as the mispositioning level, the probability of gauge failure, and the number of gauges on the optimal strain gauge position.

광섬유 센서를 이용한 원자력 발전소 격납구조물의 가동전 가압 팽창을 통한 구조건전성 시험

  • 김기수
    • Composites Research
    • /
    • 제16권6호
    • /
    • pp.56-61
    • /
    • 2003
  • In this Paper, a fiber Bragg grating(FBG) sensor system is described and FBGs are well-suited for long term and extremely severe experiments, where traditional strain gauges fail. In the system. a reflect wave-length measurement method which employs a tunable light source to find out the center wave-length of FBG sensor is used. We apply the FBG system to nuclear energy Power Plant for structural integrity test to measure the displacement of the structure under designed pressure and to check the elasticity of the structure by measuring the residual strain. The system works very well and it is expected that it can be used for a real-time strain, temperature and vibration detector of smart structure.

On strain measurement of smart GFRP bars with built-in fiber Bragg grating sensor

  • Ju, Minkwan;Park, Kyoungsoo;Moon, Doyoung;Park, Cheolwoo;Sim, Jongsung
    • Structural Engineering and Mechanics
    • /
    • 제65권2호
    • /
    • pp.155-162
    • /
    • 2018
  • A smart glass fiber reinforced polymer (SMFRP) reinforcing bar with a fiber Bragg grating (FBG) sensor was fabricated using a pultrusion technique, while ribs were formed to improve bonding between concrete and SMFRP. Then, strain of SMFRP bars were measured for a uniaxial tension test of an SMFRP bar, and a four-point bending test of concrete beams reinforced with SMFRP bars. The results of a uniaxial tension test illustrate that the strain obtained from an FBG sensor agrees well with that obtained from electrical resistance strain gauge (ERSG). Additionally, concrete beams reinforced with SMFRP bars were fabricated, and actual flexural test were performed while the strain of with an FBG sensor was compared with that of ERSG. The experimental results demonstrate that SMFRP bars can be used as reinforcement of concrete member while providing deformation information. Furthermore, SMFRP bars may provide stronger durability and smart monitoring to reinforced concrete members under corrosive environments during a service life.