• Title/Summary/Keyword: strain measurement

Search Result 1,087, Processing Time 0.03 seconds

Fiber Bragg grating sensor using a Mach-Zehnder interferometer and EDFA for EDFA for simultaneous measurement of strain and temperature. (마하젠더 간섭계와 EDFA를 이용한 온도와 스트레인을 동시에 측정하는 광섬유 브래그 격자 센서)

  • 최민호;김부균;정재훈;이병호
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.5
    • /
    • pp.371-375
    • /
    • 2001
  • We have implemented a sensor head which consists of erbium doped fiber pumped by 1480 nm LD and single fiber Bragg grating for simultaneous measurement of strain and temperature. The measurement precision and speed are improved by using Mach-Zehnder interferometer instead of optical spectrum analyzer (OSA) as a demodulator. The measurement precision of temperature measured by the amplitude variation of output signal is 0.05$^{\circ}C$ and that of strain measured by the phase variation of output signal is 0.1$\mu$strain. The measurement precision of temperature and strain are improved nearly 140 times and 700 times, respectively, compared to those using an OSA with wavelength resolution of 0.97 nm as d demodulator.

  • PDF

A Study on the Improvement of Accuracy and Precision in the Vision-Based Surface-Strain Measurement (비전을 이용한 곡면변형률 측정의 정확도 및 정밀도 향상에 관한 연구)

  • 김두수;김형종
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.294-305
    • /
    • 1999
  • A vision-based surface-strain measurement system has been still improved since the authors devel-oped the first version of it. New algorithms for the subpixel measurement and surface smoothing are introduced to improve the accuracy and precision in the present study. The effects of these algorithms are investigated by error analysis. And the equations required to calculate 3D surface-strain of a shell element are derived from the shape function of a linear solid finite-element. The influences of external factors on the measurement error are also examined, and several trials are made to obtain possible optimal condition which may minimize the error.

  • PDF

A Study of the Strain Measurement for Al 6061-T6 Tensile Specimen using the Digital Image Correlation (디지털 이미지 상관관계를 이용한 Al 6061-T6 인장시험편의 변형률 측정에 관한 연구)

  • Kwon, Oh Heon;Kim, Sang Tae;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.26-32
    • /
    • 2013
  • A digital image correlation(DIC) method is a whole-field measurement technique that acquires surface displacements and strains from images information which characterized a random speckle as intensity grey levels. Recently years, this DIC method is being developed and used increasingly in various research. In this study, we tried to apply to aluminum alloy(Al 6061-T6) using DIC method and strain gauge. DIC results demonstrated the usefulness and ability to determine a strain. The test specimen used in this study was an aluminum alloy(Al 6061-T6, thickness 1 mm). For a strain measurement, a strain gauge was attached at the center of a specimen. A specimen was lightly sprayed with a white paint and a black dot pattern was sprayed on its fully dried white surface to obtain a random speckle. The experimental apparatus used to perform the tensile test consisted of universal dynamic tester(5 kN; T.O. Co.) under displacement speed of 0.5, 1.0 and 3.0 mm/min. A Model 5100 B Scanner(V. Co.) used to obtain a strain. A CCD camera connected to a PC uses to record the images of the specimen surface. After acquisition, the images were transferred to PC where the DIC software was implemented. An acquired image was evaluated by the DIC program. DIC method for displacement and strain was suggests and it results show a good consistent remarkably. DIC results demonstrated the usefulness and ability to determine surface strain was better than by using classical measurements. The strain field measurement using a DIC is so useful that it can be applied to map strain distributions at a full area. DIC method can evaluate a strain change so it can predict a location of fracture. The findings of the investigation suggest that the DIC method is an efficient and reliable tool for full-field monitoring and detailed damage characterization of materials.

Vision-based dense displacement and strain estimation of miter gates with the performance evaluation using physics-based graphics models

  • Narazaki, Yasutaka;Hoskere, Vedhus;Eick, Brian A.;Smith, Matthew D.;Spencer, Billie F.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.709-721
    • /
    • 2019
  • This paper investigates the framework of vision-based dense displacement and strain measurement of miter gates with the approach for the quantitative evaluation of the expected performance. The proposed framework consists of the following steps: (i) Estimation of 3D displacement and strain from images before and after deformation (water-fill event), (ii) evaluation of the expected performance of the measurement, and (iii) selection of measurement setting with the highest expected accuracy. The framework first estimates the full-field optical flow between the images before and after water-fill event, and project the flow to the finite element (FE) model to estimate the 3D displacement and strain. Then, the expected displacement/strain estimation accuracy is evaluated at each node/element of the FE model. Finally, methods and measurement settings with the highest expected accuracy are selected to achieve the best results from the field measurement. A physics-based graphics model (PBGM) of miter gates of the Greenup Lock and Dam with the updated texturing step is used to simulate the vision-based measurements in a photo-realistic environment and evaluate the expected performance of different measurement plans (camera properties, camera placement, post-processing algorithms). The framework investigated in this paper can be used to analyze and optimize the performance of the measurement with different camera placement and post-processing steps prior to the field test.

Measurement of Pile Load Transfer using Optical Fiber Sensors (광섬유 센서에 의한 말뚝 하중전이 측정)

  • 오정호;이원제;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.397-404
    • /
    • 1999
  • It is essential to measure load transfer mechanism of pile to check the appropriateness of assumptions made for design purpose and to continuously monitor the behavior of pile foundation. Through many attempts to monitor the behavior of super-structure in civil engineering area using several optical fiber sensors have been made, application of optical fiber sensor technology on pile foundation has not been tried up to now. Load transfer of model piles during compression loading was measured by optical fiber sensors and compared with the measurement by strain gauges. Fiber Bragg Grating(FBG) sensor system was used since it has many advantages, such as easy multiplexing, high sensitivity, and simple fabrication. Besides the model pile tests, uniaxial tension test of steel bar and compression tests of mortar specimen were carried out to evaluate the performance of FBG sensors in embedded environments. The shift of refilming wavelength due to the strain in FBG sensor is converted to the strain at sensor location and the dependence between them is 1.28 pm/${\mu}$ strain. FBG sensors embedded in model pile showed a better survivability than strain gauges. Measured results of load transfer by both FBG sensors and strain gauges were similar, but FBG sensors showed a smoother trend than those by strain gauge. Based on the results of model pile test, it was concluded that the use of FBG sensor for strain measurement in pile has a great potential for the analysis of pile load transfer.

  • PDF

Electrical and Mechanical Properties of Semiconductive Shield in Power Cable; Volume Resistivity and Stress-Strain Measurement (전력케이블내 반도전 재료의 전기적 및 기계적 특성; 체적저항과 Stress-Strain 측정)

  • Lee Kyoung-Yong;Yang Jong-Seok;Choi Yong-Sung;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.2
    • /
    • pp.45-50
    • /
    • 2005
  • To improve mean-life and reliability of power cable, in this study, we have investigated electrical properties and stress-strain showing by changing the content of carbon black that is semiconductive additives for underground power transmission. Specimens were made of sheet form with the nine of specimens for measurement. Volume resistivity of specimens was measured by volume resistivity meter after 10 minutes in the pre-heated oven of both 25±1 [℃] and 90±1 [℃]. And stress-strain of specimens was measured by TENSOMETER 2000. A speed of measurement was 200[mm/min], ranges of stress and strain were 400[Kgf/㎠] and 600[%]. In addition tests of stress-strain were progressed by aging specimens in air oven. From this experimental results, volume resistivity was high according to increasing the content of carbon black. And yield stress was increased, while strain was decreased according to increasing the content of carbon black. And stress-strain were decreased some after aging because of oxidation reaction of chemical defect. We could know EEA was excellent more than other specimens from above experimental results.

Temperature Compensation of a Strain Sensing Signal from a Fiber Optic Brillouin Optical Time Domain Analysis Sensor

  • Kwon, Il-Bum;Kim, Chi-Yeop;Cho, Seok-Beom;Lee, Jung-Ju
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.106-112
    • /
    • 2003
  • In order to do continuous health monitoring of large structures, it is necessary that the distributed sensing of strain and temperature of the structures be measured. So, we present the temperature compensation of a signal from a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor. A fiber optic BOTDA sensor has good performance of strain measurement. However, the signal of a fiber optic BOTDA sensor is influenced by strain and temperature. Therefore, we applied an optical fiber on the beam as follows: one part of the fiber, which is sensitive to the strain and the temperature, is bonded on the surface of the beam and another part of the fiber, which is only sensitive to the temperature, is located nearby the strain sensing fiber. Therefore, the strains can be determined from the strain sensing fiber while compensating for the temperature from the temperature sensing fiber. These measured strains were compared with the strains from electrical strain gages. After temperature compensation, it was concluded that the strains from the fiber optic BOTDA sensor had good coincidence with those values of the conventional electrical strain gages.

Improvement of the Stereo Vision-Based Surface-Strain Measurement System for Large Stamped Parts (중.대형 판재성형 제품의 곡면변형률 측정을 위한 스테레오 비전 시스템의 개선)

  • 김형종;김두수;김헌영
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.404-412
    • /
    • 2000
  • It is desirable to use the square grid analysis with the aid of the stereo vision and image processing techniques in order to automatically measure the surface-strain distribution over a stamped part. But this method has some inherent problems such as the difficulty in enhancement of bad images, the measurement error due to the digital image resolution and the limit of the area that can be measured at a time. Therefore, it is still hard to measure the strain distribution over the entire surface of a medium-or large-sized stamped part even by using an automated strain measurement system. In this study, several methods which enable to solve these problems considerably without losing accuracy and precision In measurement are suggested. The superposition of images that have different high-lightened or damaged part from each other gives much enhanced image. A new algorithm for constructing of the element connectivity from the line-thinned image helps recognize up to 1,000 elements. And the geometry assembling algorithm including the global error minimization makes it possible to measure a large specimen with reliability and efficiency.

  • PDF

Development of Material Deformation Measurement System using Machine Vision (머신 비전을 활용한 재료 변형 측정 기술 개발)

  • E. B. Mok;W. J. Chung;C. W. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.20-27
    • /
    • 2023
  • In this study, the deformation of materials was measured using the video and tracking API of OpenCV. Circular markers attached to the material were selected the region of interests (ROIs). The position of the marker was measured from the area center of the circular marker. The position and displacement of the center point was measured along the image frames. For the verification, tensile tests were conducted. In the tensile test, four circular markers were attached along the longitudinal and transverse directions. The strain was calculated using the distance between markers both in the longitudinal and transverse direction. As a result, the stress-strain curve obtained using machine vision is compared to the stress-strain curve obtained from the DIC results. RMSE values of the strain from the machine vision and DIC were less than 0.005. In addition, as a measurement example, a bending angle and springback measurement according to bending deformation, and a moving position measurement of a punch, a blank holder, and a die by time change were performed. Using the proposed method, the deformation and displacement of the materials were measured precisely and easily.

Stress Measurement around a Circular Role in a Cantilever Beam under Bending Moment Using Strain Gage and Reflective Photoelasticity (스트레인 게이지와 반사형 광탄성법을 이용한 굽힘을 받는 외팔보 시편 구멍 주위의 응력측정)

  • Baek, Tae-Hyun;Park, Tae-Geun;Yang, Min-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.329-335
    • /
    • 2006
  • It is necessary to study on the stress concentration experimentally, which is the main reason to avoid mechanical dilapidation and failure, when designing a mechanical structure. Stress concentration factor of a specimen of cantilever beam with a circular hole in the center was measured using both strain gage and photoelastic methods in this paper. In strain-gage measurement, three strain gages along the line near a hole of the specimen were installed and maximum strain was extrapolated from three measurements. In photoelastic measurement, two methods were employed. First, the Babinet-Soleil compensation method was used to measure the maximum strain. Secondly, photoelastic 4-step phase shilling method was applied to observe the strain distribution around the hole. Measurements obtained by different experiments were comparable within the range of experimental error.