• Title/Summary/Keyword: strain gauges

Search Result 366, Processing Time 0.031 seconds

Study of using the loss rate of bolt pretension as a damage predictor for steel connections

  • Chui-Hsin Chen;Chi-Ming Lai;Ker-Chun Lin;Sheng-Jhih Jhuang;Heui-Yung Chang
    • Earthquakes and Structures
    • /
    • v.24 no.2
    • /
    • pp.81-90
    • /
    • 2023
  • The maximum drifts are important to the seismic evaluation of steel buildings and connections, but the information can hardly be obtained from the post-earthquake field investigation. This research studies the feasibility of using the loss rate of bolt pretension as an earthquake damage predictor. Full-scale tests were made on four steel connections using bolted-web-welded-flange details. One connection was unreinforced (UN), another was reinforced with double shear plates (DS), and the other two used reduced beam sections (RBS). The preinstalled strain gauges were used to control the pretensions and monitor the losses of the high-strength bolts. The results showed that the loss rate of bolt pretension was highly related to the damage of the connections. The pretensions lost up to 10% in all the connections at the yield drifts of 0.5% to 1%. After yielding of the connections, the pretensions lost significantly until fracture occurred. The UN and DS connections failed with a maximum drift of 4 %, and the two RBS connections showed better ductility and failed with a maximum drift of 6%. Under the far-field-type loading protocol, the loss rate grew to 60%. On the contrary, the rate for the specimen under near-fault-type loading protocol was about 40%. The loss rate of bolt pretension is therefore recommended to use as an earthquake damage predictor. Additionally, the 10% and 40% loss rates are recommended to predict the limit states of connection yielding and maximum strength, respectively, and to define the performance levels of serviceability and life-safety for the buildings.

Time Dependent Reduction of Clamping Forces of High Strength Bolt F13T (시간에 따른 F13T 고장력 볼트의 체결력 감소)

  • Jo, Jae Byung;Seong, Taek-Ryong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.291-297
    • /
    • 2009
  • Relaxation of high strength bolts was investigated. Block type and splice type specimens were fabricated with different types of bolts and different clamping lengths. Bolts were tightened to the specified torque. Clamping forces were measured through strain gauges installed on the shafts of bolts, while specimens were kept in a constant temperature and humidity. In all cases, ratio of clamping force reduction is less than 10%. Test results of different types of specimens and bolts and different clamping lengths were compared each other by using a simple model, which is suggested in this study for the estimation of bolt relaxation. The suggested model shows reasonably good agreements with test results for all cases. No difference is found between F13T and F10T bolts, but Dacro coated bolts shows higher relaxation than black bolts by approx. 30%. And also the comparison of test results shows that ratios of bolt relaxation become larger as clamping lengths of bolt shorter and the number of faying surfaces greater.

Ultrasonographic evaluation of the masseter muscle in patients with temporomandibular joint degeneration

  • Busra Arikan;Numan Dedeoglu;Aydin Keskinruzgar
    • Imaging Science in Dentistry
    • /
    • v.53 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • Purpose: Sonographic elastography can be used to evaluate the hardness of muscle tissue through the application of compression. Strain elastography gauges hardness through the comparison of echo sets before and after compression. This study utilized ultrasonography to measure the thickness and hardness of the masseter muscle in individuals with temporomandibular joint(TMJ) osteoarthritis. Materials and Methods: This study included 40 patients who presented with joint pain and were diagnosed with TMJ osteoarthritis via diagnostic cone-beam computed tomography, along with 40 healthy individuals. The thickness and hardness of each individual's masseter muscle were evaluated both at rest and at maximum bite using ultrasonography. The Mann-Whitney U test and the chi-square test were employed for statistical analysis, with the significance level set at P<0.05. Results: The mean thickness of the resting masseter muscle was 0.91 cm in patients with osteoarthritis, versus 1.00 cm in healthy individuals. The mean thickness of the masseter muscle at maximum bite was 1.28 cm in osteoarthritis patients and 1.36 cm in healthy individuals. The mean masseter elasticity index ratio at maximum bite was 4.51 in patients with osteoarthritis and 3.16 in healthy controls. Significant differences were observed between patients with osteoarthritis and healthy controls in both the masseter muscle thickness and the masseter elasticity index ratio, at rest and at maximum bite (P<0.05). Conclusion: The thickness of the masseter muscle in patients with TMJ osteoarthritis was less than that in healthy controls. Additionally, the hardness of the masseter muscle was greater in patients with TMJ osteoarthritis.

The Behaviours of Existing Tunnels in response to Multiple side-by-side Tunnel Construction in Soft Ground (연약지반 다수의 터널 병렬시공 시 기존터널의 거동)

  • Ahn, Sung Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.193-204
    • /
    • 2008
  • This paper describes laboratory experiments modelling multiple tunnel construction in soft ground. A series of small-scale model tests have been conducted at approximately 1/50 scale in order to investigate the behaviours of existing tunnels in response to the construction of new tunnels in close proximity. The model tunnels were constructed in a consolidated Speswhite Kaolin clay using a tunnelling device involving an auger type cutter within a shield. Strain gauges and LVDTs were used for instrumenting the existing tunnels. The findings obtained from the analyses of these tests were compared to the field measurements involving the reconstruction of the Northern Line London Underground Ltd. tunnels at Old street, United Kingdom. The results were also compared to the ground movement measurements obtained from a separate set of tests undertaken using the same apparatus and experimental procedures.

Confining Effect of Mortar Grouted Splice Sleeve on Reinforcing Bar (모르타르 충전식 철근이음과 구속효과)

  • Ahn, Byung-Ik;Kim, Hyong-Kee;Park, Bok-Man
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.102-109
    • /
    • 2003
  • The grouted splice steeve has been applied widely due to its superior construction efficiency, such as the unnecessity of post concrete and the large allowable limit to the arrangement of reinforcing bars. However, studies on grout-filled splice steeve still have not been sufficiently peformed. The purpose of this study is to investigate the confining effect of mortar grouted splice sleeve on reinforcing bar, known to strengthen the bond capacity between grout mortar and reinforcing bar. To accomplish this objective, totally 6 full-sized specimens were made and tested under monotonic loading. Each specimens were equipped with strain gauges at the 12 location of sleeve and reinforcing bar. The experimental variables adopted in this study are embedment length and size of reinforcing bars. Following conclusions are obtained; 1) Under ultimate strength condition, the confining pressure of grouted splice sleeve calculated from measured tangential and axial strain of the sleeve is over $200{\sim}300kgf/{cm}^2$ at any location of sleeve and improved with reduction in embedment length of reinforcing bar. 2) Untrauer and Henry's equation which describe bond strength of mortar as a function of its compressive strength and confining pressure, predicted the measured bond capacity of this test within the 5% limits.

Analysis of pile load distribution and ground behaviour depending on vertical offset between pile tip and tunnel crown in sand through laboratory model test (실내모형시험을 통한 사질토 지반에서 군말뚝과 터널의 수직 이격거리에 따른 하중분포 및 지반거동 분석)

  • Oh, Dong-Wook;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.355-373
    • /
    • 2017
  • Tunnelling in urban areas, it is essential to understand existing structure-tunnel interactive behavior. Serviced structures in the city are supported by pile foundation, since they are certainly effected due to tunnelling. In this research, thus, pile load distribution and ground behavior due to tunnelling below grouped pile were investigated using laboratory model test. Grouped pile foundations were considered as 2, 3 row pile and offsets (between pile tip and tunnel crown: 0.5D, 1.0D and 1.5D for generalization to tunnel diameter, D means tunnel diameter). Soil in the tank for laboratory model test was formed by loose sand (relative density: Dr = 30%) and strain gauges were attached to the pile inner shaft to estimate distribution of axial force. Also, settlements of grouped pile and adjacent ground surface depending on the offsets were measured by LVDT and dial gauge, respectively. Tunnelling-induced deformation of underground was measured by close range photogrammetric technique. Numerical analysis was conducted to analyze and compare with results from laboratory model test and close range photogrammetry. For expression of tunnel excavation, the concept of volume loss was applied in this study, it was 1.5%. As a result from this study, far offset, the smaller reduction of pile axial load and was appeared trend of settlement was similar among them. Particulary, ratio of pile load and settlement reduction were larger when the offset is from 0.5D to 1.0D than from 1.0D to 1.5D.

Pull-out Test of Steel Pipe Pile Reinforced with Hollow Steel Plate Shear Connectors (유공강판 전단연결재로 보강된 강관말뚝 머리의 인발실험)

  • Lee, Kyoung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.285-291
    • /
    • 2016
  • The purpose of this study was to evaluate the structural capacity of steel pipe pile specimens reinforced with hollow steel plate shear connectors by pull-out test. Compressive strength testing of concrete was conducted and yield forces, tensile strengths and elongation ratios of re-bars and hollow steel plate were investigated. A 2,000kN capacity UTM was used for the pull-out test with 0.01mm/sec velocity by displacement control method. Strain gauges were installed at the center of re-bars and hollow steel plates and LVDTs were also installed to measure the relative displacement between the loading plate and in-filled concrete pile specimens. The yield forces of the steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.44-fold and 1.53-fold compared to that of a control specimen, respectively. Limited state forces of steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.23-fold and 1.29-fold compared to that of a control specimen, respectively. Yield state displacement and limited state displacement of steel pipe pile specimens reinforced with hollow steel plate shear connector were decreased 0.61-fold and 0.42-fold compared to that of a control specimen, respectively.

Low Temperature Structural Tests of a Composite Wing with Room Temperature-Curing Adhesive Bond (상온접합 본딩이 있는 복합재 날개의 저온 구조시험)

  • Ha, Jae Seok;Park, Chan Yik;Lee, Kee Bhum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.928-935
    • /
    • 2015
  • This paper presents low temperature structural tests of a UAV wing which has room temperature-curing adhesive bond. The wing structure is made of carbon fiber reinforced composites, and the skins are bonded to the inner structures (such as ribs and spars) using room temperature-curing adhesive bond. Also, to verify damage tolerance design of the wing structure, barely visible impact damages are intentionally created in the critical areas. The attachment fittings of the wing are fixed in a specially designed chamber which can simulate the low temperature environments of the operating altitudes. The test load is applied by hydraulic actuators which are placed outside the chamber. The structural tests consist of strain survey tests and a durability test for 1-life fatigue load spectrum. During the tests, strains of major parts are measured by strain gauges and FBG sensors. The change of the initial impact damages is also monitored using piezoelectric sensors. The 1-life damage tolerance of the composite structure is verified by the structural tests under the simulated environments.

Design and Evaluation of a Microcomputer-based Vacuum Drying System for Shiitake Mushrooms (마이크로컴퓨터 시스템을 이용한 표고버섯의 감압건조에 대한 연구)

  • Choi, Jae-Yong;Kim, Kong-Hwan;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.550-555
    • /
    • 1987
  • Strain gauges attached on the Bourdon tube and load cell were used as the sensors for measuring the vacuum pressure in drying chamber and the weight loss of Shiitake mushrooms respectively. The vacuum drying system was interfaced further with the Bear II microcomputer. The interface devices used were built with such IC chips as MC 6821, ADC 0809, SN 74244 and SN 7424. The relationship between readings of vacuum gauge (P, mmHg) and digital outputs (D) from the microcomputer was represented by P =3.08 D-13.4875(r=0.9999). The weights of drying sample (W) were also related with the digital outputs (D) by W=0.4076 D-6.4762 (r=0.9999). During the vacuum drying of Shiitake mushrooms. the data on pressure and weight were recorded at regular intervals using an acquisition program on the microcomputer system. The Page model was fitted well to the drying data of Shiitake mushrooms. resulting in the following empirical equations : $(M-M_e)/(M_o-M_e)=\exp(-0.1569t^{1.0048})$ at 400 mm Hg up to 14 hours and $(M-M_e)/(M_o-M_e)=\exp(-0.1385_t^{1.2688})$ at 600 mm Hg up to 8 hours.

  • PDF

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3068-3084
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.