• 제목/요약/키워드: strain gauges

검색결과 365건 처리시간 0.023초

실험적 응력해석의 IITC 방식에 의한 콘크리트 구조물 잔류응력 평가 (Evaluation of Residual Stress using IITC of Experimental Stress Analysis on Concrete Structure)

  • 이호범;한상희;장일영
    • 대한토목학회논문집
    • /
    • 제34권2호
    • /
    • pp.415-424
    • /
    • 2014
  • 기존 콘크리트 구조물 내력은 변위 및 스트레인 게이지를 통해 기지의 가력에 따른 변화량을 계측하고, 그 결과를 수치해석 결과와 비교하여 평가한다. 이는 결과적으로 현존 콘크리트의 잔류응력을 계측 평가하므로써 완성될 수 있다. 본 논문은 실험적 응력해석법의 일환으로 콘크리트 구조물에 대한 잔류응력을 비파괴적인 방식으로 평가하는 IITC (Instrumented Indentation Technique for Concrete) 시스템 개발과 관련된 것으로 콘크리트 구조물 표면에서 압입하중과 압입깊이와의 상관관계를 이용한 실험적 평가방법을 논하였다. 본 연구에서는 구성되는 H/W 및 분석용 S/W는 새롭게 개발하였으며, 다각도의 실험결과를 이용하여 콘크리트 구조물에서의 실험적 잔류응력 추정식을 창출하였고, 자동으로 잔류응력을 평가케 함으로써 콘크리트 구조물의 축성단계에서부터 유지관리 단계에까지 자유롭게 내력을 산정할 수 있도록 하였다.

Analysis of the axle load of an agricultural tractor during plow tillage and harrowing

  • Hong, Soon-Jung;Park, Seung-Je;Kim, Wan-Soo;Kim, Yong-Joo;Park, Seong-un
    • 농업과학연구
    • /
    • 제43권4호
    • /
    • pp.665-669
    • /
    • 2016
  • Analysis of the load on the tractor during field operations is critical for the optimal design of the tractor. The purpose of this study was to do a load analysis of an agricultural tractor during plowing and harrowing. First, a load measurement system was developed and installed in a 71 kW agricultural tractor. Strain-gauges with a telemetry system were installed in the shaft located between the axles and the wheels, and used to measure the torque of the four driving axles. Second, field experiments were conducted for two types of field operations (plowing, harrowing), each at two gear levels (M2, M3). Third, load analysis was conducted according to field operation and gear level. At M2 gear selection for plowing, the maximum, minimum, and average (S. D.) torque values were 13,141 Nm; 4,381 Nm; and 6,971 Nm (${\pm}397.8Nm$, respectively). For harrowing, at M2 gear selection, torque values were, 14,504 Nm; 1,963 Nm; and 6,774 Nm (${\pm}459.4Nm$, respectively). At M3 gear selection for plowing, the maximum, minimum, and average (S. D.) torque values were,17,098 Nm; 6,275 Nm; and 8,509 Nm (${\pm}462.4Nm$, respectively). For harrowing at M3 gear selection, maximum, minimum, and average (S. D.) torque values were, 20,266 Nm; 2,745 Nm; and 9,968 Nm (${\pm}493.2$). The working speed of the tractor increased by approximately 143% when shifted from M2 (7.2 km/h) to M3 (10.3 km/h); while during plow tillage and harrowing, the load of the tractor increased approximately 1.2 times and 1.5 times, respectively.

Field Measurement and Modal Identification of Various Structures for Structural Health Monitoring

  • Yoshida, Akihiko;Tamura, Yukio
    • 국제초고층학회논문집
    • /
    • 제4권1호
    • /
    • pp.9-25
    • /
    • 2015
  • Field measurements of various structures have been conducted for many purposes. Measurement data obtained by field measurement is very useful to determine vibration characteristics including dynamic characteristics such as the damping ratio, natural frequency, and mode shape of a structure. In addition, results of field measurements and modal identification can be used for modal updating of FEM analysis, for checking the efficiency of damping devices and so on. This paper shows some examples of field measurements and modal identification for structural health monitoring. As the first example, changes of dynamic characteristics of a 15-story office building in four construction stages from the foundation stage to completion are described. The dynamic characteristics of each construction stage were modeled as accurately as possible by FEM, and the stiffness of the main structural frame was evaluated and the FEM results were compared with measurements performed on non-load-bearing elements. Simple FEM modal updating was also applied. As the next example, full-scale measurements were also carried out on a high-rise chimney, and the efficiency of the tuned mass damper was investigated by using two kinds of modal identification techniques. Good correspondence was shown with vibration characteristics obtained by the 2DOF-RD technique and the Frequency Domain Decomposition method. As the last example, the wind-induced response using RTK-GPS and the feasibility of hybrid use of FEM analysis and RTK-GPS for confirming the integrity of structures during strong typhoons were shown. The member stresses obtained by hybrid use of FEM analysis and RTK-GPS were close to the member stresses measured by strain gauges.

캔틸레버의 길이와 하중이 하악 임플랜트지지 고정성 보철물의 응력 분산에 미치는 영향 (EFFECT OF CANTILEVER LENGTH AND LOAD ON STRESS DISTRIBUTION OF FIXED IMPLANT-SUPPORTED PROSTHESES)

  • 태윤섭;이화영;조혜원
    • 대한치과보철학회지
    • /
    • 제36권4호
    • /
    • pp.615-643
    • /
    • 1998
  • The purpose of this study was to evaluate the effect of cantilever length, load, and implant number on the stress distribution of implant supported fixed prosthesis. In the replica of an edentulous human mandible, four or five implants were placed and spaced evenly between the mental foramina and symmetrical gold alloy cast superstructures with cantilever were fabricated. Strain gauges were placed in buccal and lingual side of implants. 9, 15, 21kg of loads at varying cantilever lengths were applied to the occlusal surface of fixed prostheses. The strains were recorded from each gauge and principal stresses were calculated The results were as follows : 1. Increasing the length of the cantilever increased the stresses on the bone supporting implants. and the ratio of increase became high as increasing the load. 2. In the model with four implants, the highest compressive stress was measured on lingual side of the first implants nearest loading point and the highest tensile stress was measured on buccal side of the second implants. 3. In the model with five implants, the highest compressive stress was measured on lingual side of the first implants nearest loading point. And the highest tensile stress was measured on buccal side of the second implants, and lingual side of the third implants. 4. There was no significant change of the magnitude of stress on the most distal imp]ant of non cantilevered side as increasing the cantilever length or load. 5. In general, the superstructure supported by five implants reduced the stress and was less affected by cantilever length compared to the support provided by four implants.

  • PDF

경량전철에 대한 차체 및 대차틀의 피로강도평가 (Fatigue Strength Evaluation of Carbody and Bogie Frame for the Light Rail Transit System)

  • 이은철;이준성;최윤종;이정환;서명원;이호용;이양창
    • 한국정밀공학회지
    • /
    • 제25권10호
    • /
    • pp.77-83
    • /
    • 2008
  • In terms of saving costs, energy and materials, the weight of cars has been gradually reduced by optimizing design of structure, which also gives us good performance. In compliance with this, it should satisfy the lifetime of cars for 25 years under the operation. The purpose of this study is to evaluate the strength of fatigue using date from strain gauges attached carbody and bogie frame. This dynamic stress can be evaluated using S-N curve based on stress amplitude. Modified S-N curve by CORTON-DOLAN is used for more conservative and substantial evaluation. In addition, !he loadings itself of carbody and bogie frame are considered by calculating the rate of the differences which are occurred between empty car and fuiiy occupied car with passengers. Rainflow cycle counting method is applied to arrange the stress data for the modified S-N curve to predict lifetime of the materials. Conclusively the cumulative damages are not only calculated by Miner's Rule, but the safety factors are also determined by Goodman diagram.

맥파 전달 속도(PWV) 측정을 위한 특징점 검출 알고리즘 개발 (Development of Feature Points Detection Algorithm for Measuring of Pulse Wave Velocity)

  • 최정현;조욱현;박준호;김남훈;성향숙;조종만
    • 센서학회지
    • /
    • 제20권5호
    • /
    • pp.343-350
    • /
    • 2011
  • The compliance and stiffness of artery are closely related with disease of arteries. Pulse wave velocity(PWV) in the blood vessel is a basic and common parameter in the hemodynamics of blood pressure and blood flow wave traveling in arteries because the PWV is affected directly by the conditions of blood vessels. However, there is no standardized method to measure the PWV and it is difficult to measure. The conventional PWV measurement has being done by manual calculation of the pulse wave transmission time between coronary arterial proximal and distal points on a strip chart on which the pulse wave and ECG signal are recorded. In this study, a pressure sensor consisting of strain gauges is used to measure the blood pressure of arteries in invasive method and regular ECG electrodes are used to record the ECG signal. The R-peak point of ECG is extracted by using a reference level and time windowing technique and the ascending starting point of blood pressure is determined by using differentiation of the blood pressure signal and time windowing technique. The algorithm proposed in this study, which can measure PWV automatically, shows robust and good results in the extraction of feature points and calculation of PWV.

Design of Fault Diagnostic and Fault Tolerant System for Induction Motors with Redundant Controller Area Network

  • 홍원표;윤충섭;김동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2004년도 학술대회 논문집
    • /
    • pp.371-374
    • /
    • 2004
  • Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Preventive maintenance of induction motors has been a topic great interest to industry because of their wide range application of industry. Since the use of mechanical sensors, such as vibration probes, strain gauges, and accelerometers is often impractical, the motor current signature analysis (MACA) techniques have gained murk popularity as diagnostic tool. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is independent of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current, voltage, temperatures, vibration and speed of the motor. The DSPs share information from each sensor or DSP through DPRAM with hardware implemented semaphore. And it communicates the motor status through field bus (CAN, RS485). From the designed system, we get primitive sensors data for the case of normal condition and two abnormal conditions of 3 phase induction motor control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using CAN protocol.

  • PDF

Experimental axial force identification based on modified Timoshenko beam theory

  • Li, Dong-sheng;Yuan, Yong-qiang;Li, Kun-peng;Li, Hong-nan
    • Structural Monitoring and Maintenance
    • /
    • 제4권2호
    • /
    • pp.153-173
    • /
    • 2017
  • An improved method is presented to estimate the axial force of a bar member with vibrational measurements based on modified Timoshenko beam theory. Bending stiffness effects, rotational inertia, shear deformation, rotational inertia caused by shear deformation are all taken into account. Axial forces are estimated with certain natural frequency and corresponding mode shape, which are acquired from dynamic tests with five accelerometers. In the paper, modified Timoshenko beam theory is first presented with the inclusion of axial force and rotational inertia effects. Consistent mass and stiffness matrices for the modified Timoshenko beam theory are derived and then used in finite element simulations to investigate force identification accuracy under different boundary conditions and the influence of critical axial force ratio. The deformation coefficient which accounts for rotational inertia effects of the shearing deformation is discussed, and the relationship between the changing wave speed and the frequency is comprehensively examined to improve accuracy of the deformation coefficient. Finally, dynamic tests are conducted in our laboratory to identify progressive axial forces of a steel plate and a truss structure respectively. And the axial forces identified by the proposed method are in good agreement with the forces measured by FBG sensors and strain gauges. A significant advantage of this axial force identification method is that no assumption on boundary conditions is needed and excellent force identification accuracy can be achieved.

Model tests on bearing capacity and accumulated settlement of a single pile in simulated soft rock under axial cyclic loading

  • Zhang, Benjiao;Mei, Can;Huang, Bin;Fu, Xudong;Luo, Gang;Lv, Bu
    • Geomechanics and Engineering
    • /
    • 제12권4호
    • /
    • pp.611-626
    • /
    • 2017
  • The research reported herein is concerned with the model testing of piles socketed in soft rock which was simulated by cement, plaster, sand, water and concrete hardening accelerator. Model tests on a single pile socketed in simulated soft rock under axial cyclic loading were conducted and the bearing capacity and accumulated deformation characteristics under different static, and cyclic loads were studied by using a device which combined oneself-designed test apparatus with a dynamic triaxial system. The accumulated deformation of the pile head, and the axial force, were measured by LVDT and strain gauges, respectively. Test results show that the static load ratio (SLR), cyclic load ratio (CLR), and the number of cycles affect the accumulated deformation, cyclic secant modulus of pile head, and ultimate bearing capacity. The accumulated deformation increases with increasing numbers of cycles, however, its rate of growth decreases and is asymptotic to zero. The cyclic secant modulus of pile head increases and then decreases with the growth in the number of cycles, and finally remains stable after 50 cycles. The ultimate bearing capacity of the pile is increased by about 30% because of the cyclic loading thereon, and the axial force is changed due to the applied cyclic shear stress. According to the test results, the development of accumulated settlement is analysed. Finally, an empirical formula for accumulated settlement, considering the effects of the number of cycles, the static load ratio, the cyclic load ratio and the uniaxial compressive strength, is proposed which can be used for feasibility studies or preliminary design of pile foundations on soft rock subjected to cyclic loading.

온도데이터를 활용한 현장타설 캔틸레버 교량의 시공 중 계측 (Construction Monitoring Methods of FCM Bridge Using Temperature Data)

  • 김현중;문대중;남순성;정주용
    • 한국전산구조공학회논문집
    • /
    • 제29권3호
    • /
    • pp.219-227
    • /
    • 2016
  • 이 연구에서는 현장타설 캔틸레버공법(free cantilever method)을 적용한 PSC(prestressed concrete) 교량에 콘크리트의 장기거동을 고려한 시공 중 계측분석 방법을 제안하였다. 콘크리트 박스 거더의 장기 거동에 따른 응력을 확인하기 위해 온도센서와 변형률계를 함께 설치하고 계측된 데이터를 이용하여 크리프계수를 산출하였다. 또한 크리프계수를 적용한 콘크리트 박스 거더의 시공 중 응력을 분석하고 설치된 온도 센서의 변화 데이터를 비교하여 세그먼트 시공에 따른 연직변위를 분석하였다. 연구결과, 교량의 장기 거동을 고려한 FCM 교량의 시공 중 계측은 레이저 변위계나 처짐계를 사용하지 않고 온도와 변위 데이터만을 이용하여 효율적인 분석이 가능한 것으로 나타났다.