• Title/Summary/Keyword: strain estimation

Search Result 432, Processing Time 0.031 seconds

Feasibility study on model-based damage detection in shear frames using pseudo modal strain energy

  • Dehcheshmeh, M. Mohamadi;Hosseinzadeh, A. Zare;Amiri, G. Ghodrati
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.47-56
    • /
    • 2020
  • This paper proposes a model-based approach for structural damage identification and quantification. Using pseudo modal strain energy and mode shape vectors, a damage-sensitive objective function is introduced which is suitable for damage estimation and quantification in shear frames. Whale optimization algorithm (WOA) is used to solve the problem and report the optimal solution as damage detection results. To illustrate the capability of the proposed method, a numerical example of a shear frame under different damage patterns is studied in both ideal and noisy cases. Furthermore, the performance of the WOA is compared with particle swarm optimization algorithm, as one the widely-used optimization techniques. The applicability of the method is also experimentally investigated by studying a six-story shear frame tested on a shake table. Based on the obtained results, the proposed method is able to assess the health of the shear building structures with high level of accuracy.

Experimental Studies on Tension, Compression JC Constitutive Equation Parameter of Strain Rate Effect for AISI-4340 (AISI-4340 변형률 속도 변화에 따른 인장, 압축형 JC 구성방정식 변수에 관한 연구)

  • Woo, Sanghyun;Lee, Changsoo;Park, Leeju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.520-527
    • /
    • 2017
  • In this study, the experimental methods are compared for obtaining the parameters of the Johnson-Cook constitutive model. The parameters used for numerical simulation are very important in making an accurate estimation of numerical simulation. So, the testing method of obtaining the parameters is also very important. We compared the difference of conventional method, compression method and tensile method of AISI-4340 steel at various strain rate by using MTS, SHPB and SHTB. Taylor impact test and M&S were carried out to compare differences among these three types of JC constitutive parameter.

Estimation of Local Strain Distribution of Shear-Compressive Failure Type Beam Using Digital Image Processing Technology (화상계측기법에 의한 전단압축파괴형 보의 국부변형률분포 추정)

  • Kwon, Yong-Gil;Han, Sang-Hoon;Hong, Ki-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • The failure behavior of RC structure was exceedingly affected by the size and the local strain distribution of the failure zone due to the strain localization behavior on the tension softening materials. However, it is very difficult to quantify and assess the local strain occurring in the failure zone by the conventional test method. In this study, image processing technology, which is available to measure the strain up to the complete failure of RC structures, was used to estimate the local strain distribution and the size of failure zone. In order to verify the reliability and validity for the image processing technology, the strain transition acquired by the image processing technology was compared with strain values measured by the concrete gauge on the uniaxial compressive specimens. Based on the verification of image processing technology for the uniaxial compressive specimens, the size and the local strain distribution of the failure zone of deep beam was measured using the image processing technology. With the results of test, the principal tensile/compressive strain contours were drawn. Using the strain contours, the size of the failure zone and the local strain distribution on the failure of the deep beam was evaluated. The results of strain contour showed that image processing technology is available to assess the failure behavior of deep beam and obtain the local strain values on the domain of the post-peak failure comparatively.

Shape estimation of the composite smart structure using strain sensors (변형률 감지기를 이용한 복합재료 지능구조물의 변형형상예측)

  • Yoon, Young-Bok;Cho, Young-Soo;Lee, Dong-Gun;Hwang, Woon-Bong;Ha, Sung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.23-32
    • /
    • 1998
  • A shape estimation is needed to control actively a smart structure. A method is, hence, proposed to predict the deformed shape of the structure subjected to unknown external load using the signal from sensors attached to the structure. The shape estimation is based on the relationship between the deformation of the structure and the signal from the sensors. The matrix containing the relationship between the deformation and signal is obtained using fictitious force or eigenvector of global stiffness matrix. Then the deformed shape can be predicted using the linear matrix and signal from sensors attached to the structure. To verify this method, experiment and FEM were performed and it was shown that the shape estimation method based on the fictitious force predicts deflections well and more accurately than that based on eigenvector.

Tractive Force Estimation in Real-time Using Brake Gain Adaptation (브레이크 게인 적응기법을 이용한 종방향 타이어 힘의 실시간 추정)

  • ;;Karl Hedrick
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.214-219
    • /
    • 2003
  • This paper includes real-time tractive force estimation method using standard vehicle sensors such as wheel speed, brake pressure, throttle position, engine speed, and transmission carrier speed sensor. Engine map, torque converter lookup table, shaft torque observer, and brake gain adaptation method are used to estimate the tractive force. To verify this estimator, measurement which uses strain-based brake torque sensor and estimation results are presented. All results was performed using a real vehicle in a real-time.

Building Response to Excavation-Induced Ground Movements and Damage Estimation (굴착유발 지반변위에 의한 인접구조물의 거동 및 손상도 예측)

  • Son, Moo-Rak;Cording, E.J.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.249-256
    • /
    • 2006
  • New infrastructures and buildings are being constructed increasingly in congested urban areas, and excavation-induced ground movements often cause distortion and damage to adjacent buildings. Protection of adjacent structures occupies a major part of the cost, schedule and third-party impacts of urban development. To limit damage or mitigate their effects on nearby structures, it is highly important to understand the whole mechanism from excavation to building damage, and to estimate building damage reliably before excavation and provide appropriate measures. This paper investigates the effects of excavation-induced ground movements on nearby structures, considering soil-structure interactions for ground and structures, and a building damage criterion, which is based on the state of strain, is proposed. The criterion is compared with other existing damage estimation criteria and a procedure is finally provided for estimating building damage due to excavation-induced ground movements.

  • PDF

V-Factor Estimation Under Thermal and Mechanical Stress for Circumferentially Cracked Cylinder (열하중 및 기계하중이 작용하는 원주 방향 균열 배관에 대한 V-계수 평가)

  • Song, Tae-Kwang;Oh, Chang-Kyun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1123-1131
    • /
    • 2008
  • This paper provides V-factor estimation under combined mechanical and thermal load for circumferential cracks. Results are based on finite element analyses and effect of types and magnitudes of the thermal stress, crack geometry, the loading mode and plastic strain hardening on variations of the V-factor are investigated. The results of finite element analyses are compared with R6 values. As a result, it is shown that R6 gives generally conservative results. The conservatism is especially increased for the combination of large mechanical and thermal load. As a result, new estimation method which uses failure assessment line in R6 is proposed for V-factor and gives less conservative results.

Burst pressure estimation of Alloy 690 axial cracked steam generator U-bend tubes using finite element damage analysis

  • Kim, Ji-Seok;Kim, Yun-Jae;Lee, Myeong-Woo;Jeon, Jun-Young;Kim, Jong-Sung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.666-676
    • /
    • 2021
  • This paper presents numerical estimation of burst pressures of axial cracked U-bend tubes, considering the U-bending process analysis. The validity of the FE simulations is confirmed by comparing with published experimental data. From parametric analyses, it is shown that existing EPRI burst pressure estimation equations for straight tubes can be conservatively used to estimate burst pressures of the U-bend tubes. This is due to the increase in yield strength during the U-bending process. The degree of conservatism would decrease with increasing the bend radius and with increasing the crack depth.