• Title/Summary/Keyword: strain estimation

Search Result 432, Processing Time 0.03 seconds

ASSESSMENT OF TUNNELLING-INDUCED BUILDING DAMAGE

  • Son, Moo-Rak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.86-95
    • /
    • 2010
  • Ground movements during tunnelling have the potential for major impact on nearby buildings, utilities and streets. The impacts on buildings are assessed by linking the magnitude of ground loss at the source of ground loss around tunnel to the lateral and vertical displacements on the ground surface, and then to the lateral strain and angular distortion, and resulting damage in the building. To prevent or mitigate the impacts on nearby buildings, it is important to understand the whole mechanism from tunnelling to building damage. This paper discusses tunneling-induced ground movements and their impacts on nearby buildings, including the importance of the soil-structure interactions. In addition, a building damage criterion, which is based on the state of strain, is presented and discussed in detail and the overall damage assessment procedure is provided for the estimation of tunnelling-induced building damage considering the effect of soil-structure interaction.

  • PDF

Estimation of Critical Degree of Hydration and Thermal Expansion Coefficient of Early-Age Concrete from Measured Temperature, Strain and Stress (온도, 변형 및 응력 계측을 통한 초기재령 콘크리트의 임계수화도 및 열팽창계수 추정)

  • 오병환;최성철;신준호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.809-814
    • /
    • 2002
  • Recently, the properties of early-age concrete are increasingly important because these properties directly influence the behavior of early-age concrete structures including stress and cracking behavior. Nevertheless, the studies on early-age concrete are limited to strength and temperature development. The purpose of present study is to propose a simple and rational method which can predict the stress and strain behavior of young age concrete. A series of test have been done to measure the temperature development, strains and stresses in concrete members. The concept of equivalent age was used to define the degree of hydration and this degree of hydration was used to calculate the strength and elastic modulus. The critical degree of hydration and thermal expansion coefficient were calculated using experimental data. It is seen that the critical degree of hydration range from 0.05 to 0.11 based on the measuring method. The thermal expansion coefficient was calculated based on the measured non-mechanical strain and it is found that the coefficient decreases slightly with the increase of age. The consideration of critical degree of hydration in calculating stresses gives more accurate results. The present study provides useful method and data in evaluating early-age behavior of concrete structure.

  • PDF

Estimation of local ice load by analyzing shear strain data from the IBRV ARAON's 2016 Arctic voyage

  • Jeon, Mincheul;Choi, Kyungsik;Min, Jung Ki;Ha, Jung Seok
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.421-425
    • /
    • 2018
  • The icebreaking research vessel ARAON performed ice field tests during her 2016 Arctic voyage. The ship is subjected to ice loads through ice-ship interaction processes. Local ice load acting on ARAON's bow section was measured by using stain gauges installed on the inner hull plates and transverse frames of bow section. In this paper the local ice loads at transverse frames estimated from shear strain data were compared to ice loads from hull plate pressures by using the influence coefficient method. In addition to the analysis of local ice loads, the characteristics of peak ice loads with the ship speed is also discussed. It is recommended that the local ice loads estimated by calculating shear forces acting on transverse frames may be useful in estimating local ice loads on the hull of ship.

Comparative Study on Mechanical Behavior of Low Temperature Characteristics of Polymeric Foams for Ships and Offshore Structures (폴리머 폼의 선박 및 해양구조물 적용을 위한 극저온 기계적 거동 특성 분석)

  • Park, Seong-Bo;Kim, Jeong-Hyeon;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.495-502
    • /
    • 2014
  • Glass-reinforced polyurethane foam (R-PUF) is widely used as the primary and secondary insulation of Mark-III type liquefied natural gas (LNG) cargo system. And, polyurethane foam (PUF) and polyisocyanurate foam (PIR) are often used for insulation of onshore structures or LNG storage and pipeline system. These polymeric foam materials are known for the characteristics that mechanical properties are dependent on strain rate and temperature. In this study, compression tests for R-PUF, PIR, and PUF were carried out for the estimation of mechanical behaviors under the cryogenic environment. The range of thermal condition was from room temperature to 110K and strain rates were $10^{-3}s^{-1}$ and $10^{-4}s^{-1}$. The test results were analyzed based on the conditions of strain-rate and temperature.

Deformation Analysis of a Shallow NATM Tunnel using Strain Softening Model and Field Measurement (변형률 연화모델과 현장계측을 이용한 저토피 NATM터널의 변형해석)

  • Lee, Jaeho;Kim, Youngsu;Moon, Hongduk;Kim, Daeman;Jin, Guangri
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.29-36
    • /
    • 2007
  • The control and prediction of surface settlement, gradient and ground displacement are the main factors in urban tunnel construction. This paper carried out the estimation and prediction of ground behavior around tunnel due to excavation using computational method and case study in detail for the analysis of deformation behavior in urban NATM tunnel. Computational method was performed by FLAC-2D with strain softening model and elastic plastic model. Field measurements of surface subsidence and ground displacement were adopted to monitor the ground behavior resulting from the tunneling and these values were applied to modify tunnel design parameters on construction.

  • PDF

Reliability of Strain Estimation on Triangular Network and A Case Study; Deformation of Korea due to 2011 Tohoku Earthquake observed by GPS (삼각망에서 변형률산출의 신뢰도와 적용례; GPS로 관측된 2011 토호쿠지진에 의한 한반도 변형)

  • Na, Sung-Ho;Chung, Tae Woong;Choi, Byung-Kyu;Yoo, Sung-Moon
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.284-292
    • /
    • 2013
  • A stable procedure is presented to attain most probable and unbiased estimate of principal strain, rotation, and dilatation for 2-dimensional geodetic data on triangular network. The proper network size should be chosen carefully, because the errors of these estimates of strain tensor and other associated observables grow inversely proportional to the area of station triangle. As a case study, the deformation observables for the GPS-monitored co-seismic displacement in Korea due to the 2011 Tohoku-Oki earthquake were attained accordingly.

Damage Detection in a Beam Structure Using Modal Strain Energy (빔 구조물의 모달 변형에너지를 이용한 손상탐지)

  • 박수용;최상현
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.333-342
    • /
    • 2003
  • The objective of this paper is to present an algorithm to locate and size damage in a beam structure. The method uses the changes in the modal strain energy distribution. A damage index, utilized to identify possible location and corresponding severity of local damage, is formulated and expressed in terms of modal displacements that can be obtained from mode shapes of the undamaged and the damaged structures. The possible damage locations in the structure arc determined by the application of damage indicator according to previously developed decision rules. The robustness and effectiveness of the method arc demonstrated using numerical examples of beam structures with simulated damage.

Evaluation of Modulus of Soils Using Various Laboratory Tests (다양한 실내시험을 이용한 지반의 탄성계수 평가)

  • 권기철;김동수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.345-352
    • /
    • 2000
  • It is very important to evaluate the reliable nonlinear modulus characteristics of soils not only in the analysis of geotechnical structures under working stress conditions but also for the soil dynamic problems. For the evaluation of modulus characteristics of soils, various tests have been mostly employed in laboratory. However, different testing techniques are likely to have different ranges of reliable strain measurements, different applied stress level, and different loading frequencies, and the modulus of soils can be affected by these variables. For reliable evaluation, therefore, those effects on the modulus need to be considered, and measured values should be effectively adjusted to actual conditions where the soil is working. In this paper, to evaluate the modulus characteristics of soils, laboratory testing such as free-free resonant column (FF-RC), resonant column (RC), torsional shear (TS), static TX, and cyclic M/sub R/ tests were performed. The effects of strain amplitude, loading frequency, loading cycles, confining pressure, density, and water content on modulus were investigated. It is shown that the FF-RC test, which is simple and inexpensive testing technique, can provide a reliable estimation of small strain Young's modulus (E/sub max/), and the modulus evaluated by various laboratory tests are comparable to each other fairly well when the effects of these factors are properly taken into account.

  • PDF

Development of Evaluation Technology of Mechanical Properties Using Continuous Indentation Method (연속압입시험법을 이용한 소재의 기계적 물성 평가기술 연구)

  • Lee, Jeong-Hwan;Ok, Myoung-Ryul;Lee, Yun-Hee;Ahn, Jeong-Hoon;Kwon, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.703-708
    • /
    • 1997
  • Continuous indentation test is a very powerful method to monitor the materials reliability since it is very simple, easy and almost non-destructive. It can provide material properties such as elastic modulus, yield strength, work-hardening exponent, etc., than the conventional hardness test. In our study, the true stress-strain curve is derived from the indentation load-depth curve. For this, average indentation strain is defined and the flow stress is obtained from the analysis of the indentation stress field. The residual stress is analyzed from the variation of the indentation behavior with the applied residual stress. And the estimation of fracture characteristic is tried by considering the conventional fracture toughness modeling and the stress/strain state under the spherical indenter.

  • PDF

A Suggestion of an Empirical Equation for Shear Modulus Reduction Curve Estimation of Sandy Soils (사질토 전단탄성계수 감소곡선 산정을 위한 경험식 제안)

  • Park, Dug-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.126-126
    • /
    • 2002
  • In dynamic analyses such as seismic ground response and soil-structure interaction problems, it is very crucial to obtain accurate dynamic shear modulus of soil deposit. In this study, an extensive data base of available experimental data is compiled and reanalyzed to establish a simple empirical formula for the dynamic shear modulus reduction curve to cover wide range of strain for sandy soils. The proposed empirical equation is to represent the dynamic shear modulus degradation with strain in terms of low-amplitude dynamic shear modulus and effective mean confining Pressure, since those factors have the most significant effect on the Position and shape of the shear modulus reduction curve for nonelastic soils. If low-amplitude shear modulus is measured, degraded modulus at any shear strain amplitude can be calculated using the proposed equation.