• 제목/요약/키워드: strain energy release rates

검색결과 14건 처리시간 0.021초

Strain energy release rates in the curved spar wingskin joints with pre-embedded delaminations

  • P.K. Mishra;A.K. Pradhan;M.K. Pandit ;S.K. Panda
    • Structural Engineering and Mechanics
    • /
    • 제87권1호
    • /
    • pp.47-56
    • /
    • 2023
  • Any pre-existed delamination defect present during manufacturing or induce during service loading conditions in the wingskin adherend invariably shows a greater loss of structural integrity of the spar wingskin joint (SWJ). In the present study, inter-laminar delamination propagation at the critical location of the SWJ has been carried out using contact and multi-point constraint finite elements available with commercial FE software (ANSYS APDL). Strain energy release rates (SERR) based on virtual crack closure technique have been computed for evaluation of the opening (Mode-I), sliding (Mode-II) and cross sliding (Mode-III) modes of delamination by sequential release of multi point constraint elements. The variations of different modes of SERR are observed to be significant by considering varied delamination lengths, material properties of adherends and radius of curvature of the SWJ panel. The SERR rates are seen to be much different at the two pre-embedded delamination ends. This shows dissimilar delamination propagation rates. The maximum is seen to occur in the delamination front in the unstiffened region of the wingskin. The curvature geometry and material anisotropy of SWJ adherends significantly influences the SERR values. Increase in the SERR values are observed with decrease in the radius of curvature of wingskin panel, keeping its width unchanged. SWJs made with flat FRP composite adherends have superior resistance to delamination damage propagation than curved composite laminated SWJ panels. SWJ made with Boron/Epoxy (B/E) material shows greater resistance to the delamination propagation.

Interlaminar stresses and delamination of composite laminates under extension and bending

  • Nguyen, Tien Duong;Nguyen, Dang Hung
    • Structural Engineering and Mechanics
    • /
    • 제25권6호
    • /
    • pp.733-751
    • /
    • 2007
  • The metis element method (Hung 1978) has been applied to analyse free edge interlaminar stresses and delamination in composite laminates, which are subjected to extension and bending. The paper recalls Lekhnitskii's solution for generalized plane strain state of composite laminate and Wang's singular solution for determination of stress singularity order and of eigen coefficients $C_m$ for delamination problem. Then the formulae of metis displacement finite element in two-dimensional problem are established. Computation of the stress intensity factors and the energy release rates are presented in details. The energy release rate, G, is computed by Irwin's virtual crack technique using metis elements. Finally, results of interlaminar stresses, the three stress intensity factors and the energy release rates for delamination crack in composite laminates under extension and bending are illustrated and compared with the literature to demonstrate the efficiency of the present method.

샤피충격시험기를 이용한 고무보강 폴리머재료의 파괴인자 결정에 관한연구 (A study on the Determination of Fractuye Parameters for Rubber Toughened Polymeric Materials Using Instrumented Charpy Impact Test)

  • 최영식;박명균;박세만
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.389-394
    • /
    • 2001
  • The notched Charpy and Izod impact tests arc the most prevalent techniques used to characterize the effects of high impulse loads on ploymeric materials. An analysis method for rubber toughened PVC is suggested to evaluate critical strain energy release rates(Gc) from the Charpy impact energy measurements. An Instrumented Charpy impact tester was used to extract ancillary information concerning fracture properties in addition to total fracture properties and maximum critical loads. The stress intensity factor Kd was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well.

  • PDF

혼합모우드 층간분리하에 있는 탄소/에폭시 복합재료의 변형에너지 방출율 (Strain Energy Release Rate of Carbon/Epoxy Composite Material under Mixed Mode Delamination)

  • 염영진;유희
    • Composites Research
    • /
    • 제12권3호
    • /
    • pp.66-74
    • /
    • 1999
  • 탄소/에폭시 복합재료 적층판의 혼합 모드 층간분리 연구를 위하여 수정 혼합 모드 굽힘시험이 수행되었다. 하중레버의 하중 부가점 위치와 시편에 작용하는 굽힘 하중점 위치를 변화시킴으로써 다양한 혼합 모드 비를 구할 수 있었다. 이론과 시험 및 유한요소 해석을 병행하여 변형에너지방출율을 구한 결과 이들은 잘 일치하여 일반적으로 사용될 수 있는 시험 방법으로 정립될 수 있음을 확인하였다.

  • PDF

저속 충격시 PVC/MBS재료의 파괴특성에 관한 연구 (A Study on Fracture Parameters for PVC/MBS Composites under Low Velocity Impact)

  • 최영식;박명균;박세만
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.837-840
    • /
    • 2002
  • An analysis method for rubber toughened PVC is suggested to evaluate critical dynamic strain energy release rates($G_c$) from the Charpy impact energy measurements. An instrumented Charpy impact tester was used to extract ancillary information concerning fracture parameters in addition to total fracture energies and maximum critical loads. The dynamic stress intensity factor $K_{Id}$ was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well. The fracture surfaces produced under low velocity impact fur PVC/MBS composites were investigated by SEM. The results show that MBS rubber is very effective reinforcement material for toughening PVC.C.

  • PDF

폴리머재료의 파괴인성치에 관한 연구 (A study on the Dynamic Fracture Toughness for Polymeric Materials)

  • 최영식;박명균
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2001년도 춘계학술대회
    • /
    • pp.311-317
    • /
    • 2001
  • The notched Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on ploymeric materials. An analysis method for rubber toughened PVC is suggested to evaluate critical strain energy release rates(Gc) from the Charpy impact energy measurements. An Instrumented Charpy Impact tester was used to extract ancillary information concerning fracture properties in addition to total fracture properties and maximum critical loads. The stress intensity factor Kd was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well.

  • PDF

정상 중력장에서 낮은 스트레인율을 갖는 대향류 비예혼합화염의 소화한계 (Extinction Limits of Low Strain Rate Counterflow Nonpremixed Flames in Normal Gravity)

  • 오창보;최병일;김정수;;박정
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.997-1005
    • /
    • 2005
  • The extinction characteristics of low strain rate normal gravity (1-g) nonpremixed methane-air flames were studied numerically and experimentally. A time-dependent axisymmetric two-dimensional (2D) model considering buoyancy effects and radiative heat transfer was developed to capture the structure and extinction limits of 1-g flames. One-dimensional (1D) computations were also conducted to provide information on 0-g flames. A 3-step global reaction mechanism was used in both the 1D and 2D computations to predict the measured extinction limit and flame temperature. A specific maximum heat release rate was introduced to quantify the local flame strength and to elucidate the extinction mechanism. Overall fractional contribution by each term in the energy equation to the heat release was evaluated to investigate the multi-dimensional structure and radiative extinction of 1-g flames. Images of flames were taken for comparison with the model calculation undergoing extinction. The two-dimensional numerical model was validated by comparing flame temperature profiles and extinction limits with experiments and ID computation results. The 2D computations yielded insight into the extinction mode and flame structure of 1-g flames. Two combustion regimes depending on the extinction mode were identified. Lateral heat loss effects and multi-dimensional flame structure were also found. At low strain rates of 1-g flame ('Regime A'), the flame is extinguished from the weak outer flame edge, which is attributed to multi-dimensional flame structure and flow field. At high strain rates, ('Regime B'), the flame extinction initiates near the flame centerline due to an increased diluent concentration in reaction zone, which is the same as the extinction mode of 1D flame. These two extinction modes could be clearly explained with the specific maximum heat release rate.

고무보강 폴리머 재료의 저속 충격 해석 (A study on the Impact Characteristics for Rubber Toughened polymeric Materials under Low Velocity Impact)

  • 구본성;박명균;박세만
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2004년도 춘계학술대회
    • /
    • pp.219-231
    • /
    • 2004
  • The Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on polymeric materials. An analysis method for rubber toughened PVC is suggested to evaluated critical dynamic strain energy release rates(G$_c$) from the Charpy impact tester was used to extract ancillary information concerning fracture parameters in additional to total fracture energies and maximum critical loads. The dynamic stress intensity factor KID was computed for varying amounts of rubber contents from the obtain maximum critical loads and also toughening effects were investigated as well. The fracture surfaces produced under low velocity impact for PVC/MBS composites were investigated by SEM. The results show that MBS rubber is very effective reinforcement material for toughening PVC.

  • PDF

복합재료 Single-Lap 본딩 조인트의 파괴 특성에 대한 실험 및 수치해석 연구 (Testing and Numerical Analysis on the Fracture Characteristics of Composite Adhesive Bonded Single-Lap Joints)

  • 김광수;박재성;장영순;이영무
    • Composites Research
    • /
    • 제16권5호
    • /
    • pp.45-53
    • /
    • 2003
  • 본 논문에서는 이차 본딩으로 접착된 복합재료-복합재료 Single-Lap 조인트 시편에 대해 인장 시험 및 수치해석을 통해 그 파손 특성을 조사하였다. 시편시험에서는 시험 중에 CCD 카메라 및 AE 센서를 이용해 초기 균열의 발생 및 진전양상에 대한 시험적인 관찰을 수행하였다. 시편에 대해 기하비선형 유한요소해석 및 VCCT(Virtual Crack Closure Technique)기법을 이용해 시편의 거동 및 변형율에너지방출률을 계산하고 세 가지 관찰된 초기 균열 모드에 대해 파손강도를 계산하였다. 인장시험에서 초기 균열은 모서리 계면 균열, 측면 계면 균열 및 층간 분리 균열의 세 가지 형태로 최종 파손의 60∼90% 하중에서 발생하였다. 주된 파손 모드는 접착제 계면 파손(adhesive failure) 및 적층판의 첫 번째 및 두 번째의 층간 분리 파손이었다. 두꺼운 접착제 층을 갖는 시편들은 초기균열이 낮은 하중에서 발생하였지만 균열진전에 대한 저항성 및 파손하중은 높게 나타났다. 층간분리파손은 주로 두꺼운 접착제의 경우에 발생하였다. 세 가지 초기 균열 모드에 대해 변형률에너지방출률은 Mode I의 G값이 Mode II의 G값보다 크게 계산되었다. Mode I 및 전체 G값은 측면 계면 균열, 모서리 계면 균열, 층간분리 균열의 순서로 크게 계산되었다.

On geometry dependent R-curve from size effect law for concrete-like quasibrittle materials

  • Zhao, Yan-Hua;Chang, Jian-Mei;Gao, Hong-Bo
    • Computers and Concrete
    • /
    • 제15권4호
    • /
    • pp.673-686
    • /
    • 2015
  • R-curve based on the size effect law previously developed for geometrically similar specimens (geometry type III) is extended to geometries with variable depth (geometry type I) as well as with variable notch (geometry type II), where the R-curve is defined as the envelope of the family of critical strain energy release rates from specimens of different sizes. The results show that the extended R-curve for type I tends to be the same for different specimen configurations, while it is greatly dependent on specimen geometry in terms of the initial crack length. Furthermore, the predicted load-deflection responses from the suggested R-curve are found to agree well with the testing results on concrete and rock materials. Besides, maximum loads for type II specimen are predicted well from the extended R-curve.