• Title/Summary/Keyword: strain direction

Search Result 727, Processing Time 0.026 seconds

Development of Fiber Optic Total Reflected Extrinsic Fabry-Perot Interferometric Sensor for Structural Strain Measurement (구조물의 변형률 측정을 위한 광섬유 TR-EFPI 센서의 개발)

  • Kwon, In-Bum;Choi, Man-Yong;Moon, Hahn-Gue;Kim, Min-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.96-105
    • /
    • 2000
  • Fiber optic TR-EFPI(total reflected extrtinsic Fabry-Perot interferometric) sensor was developed to measure the strain of structures, such as building, bridge, aircraft, etc. It has been difficult to distinguish the increase and decrease of the strain from the conventional fiber optic EFPI sensor because their signals only have a sinusoidal wave pattern related to the change of strain. Also, the absolute strain could not be measured by the simple fiber optic EFPI sensor. In this study, in order to measure the magnitude of strain with the direction of strain, the fiber optic sensor was simply constructed with the total reflected EFPI sensor probe. This probe was manufactured with a single mode fiber and a mirror coated fiber in a silica glass capillary tube. The output signal of this fiber optic TR-EFPT sensor can give the information about the magnitude and the direction of strain. The loading-unloading test was performed by the universal testing machine with alluminum beam specimen to compare the strain from fiber optic TR-EFPI sensor with the value from electrical strain gauge. In the result of this experiment. the strain from fiber optic TR-EFPI sensor had a good agreement with the values from the electrical strain gauge.

  • PDF

Analysis of the Stress-Strain Relationship of Concrete Compression Members Strengthened by Composite Materials (고분자복합재료 보강 콘크리트 압축부재의 응력-변형률 관계 해석)

  • 이상호;장일영;김효진;나혁층
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.717-720
    • /
    • 1999
  • Recently, the fiber composite materials such as carbon fiber, glass fiber, or aramid, have been frequently used in strengthening reinforced concrete structures. The fiber composite materials typically have orthotropic characteristic and the strength changes significantly acording to the direction of fibers and the method of the lamination. In this study, an algorithm to estimate the stress-strain relationship of the composite materials which have different fiber directions and symmetric or non-symmetric lamination has been developed by using Tsai-Hill and Tsai-Wu failure criteria and progressive laminate failure theory. This algorithm has been implemented to several stress-strain models for the laterally confined concrete compression members such as Mander, Hosotani, and Nakatsuka. The evaluated stress-strain behaviors by the different models are discussed.

  • PDF

A Study on the Energy Release Rate of Delaminated Composite Laminates (층간분리된 복합적층판의 에너지 방출률에 관한 연구)

  • Cheong, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.97-107
    • /
    • 1995
  • Global postbuckling analysis is accomplished for one-dimensional and two-dimensional delaminations. A new finite element model, which can be used to model the global postbuckling analysis of one-dimensional and two-dimensional delaminations, is presented. In order to calculate the strain energy release rate, geometrically nonlinear analysis is accomplished, and the incremental crack closure technique is introduced. To check the effectiveness of the finite element models and the incremental crack closure technique, the simplified closed-form sloution for a through-the-width delamination with plane strain condition is derived and compared with the finite element result. The finite element results show good agreement with the closed-foul1 solutions. The present method was extended to calculate the strain energy release rate for two-dimensional delamination. For a symmetric circular delamination, the strain energy release rate shows great variation along the delamination front. and the delamination growth appears to occur perpendicular to the loading direction.

  • PDF

Uniaxial Compression Behavior of High-Strength Concrete Confined by Low-Volumetric Ratio Lateral Ties

  • Hong Ki-Nam;Han Sang-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.843-852
    • /
    • 2005
  • Presently, test results and stress-strain models for poorly confined high-strength columns, more specifically for columns with a tie volumetric ratio smaller than $2.0\%$, are scarce. This paper presents test results loaded in axial direction for square reinforced concrete columns confined by various volumetric ratio lateral ties including low-volumetric ratio. Test variables include concrete compressive strength, tie yield strength, tie arrangement type, and tie volumetric ratio. Local strains measured using strain gages bonded to an acryl rod. For square RC columns confined by lateral ties, the confinement effect was efficiently improved by changing tie arrangement type from Type-A to Type-B. A method to compute the stress in lateral ties at the concrete peak strength and a new stress-strain model for the confined concrete are proposed. Over a wide range of confinement parameters, the model shows good agreement with stress-strain relationships established experimentally.

Genetic Characterization of the Urease Gene Cluster in Photobacterium sp. Strain HA-2 Isolated from Seawater (해수에서 분리한 Photobacterium sp. Strain HA-2가 보유하는 요소분해효소 유전자의 유전적 특징)

  • Kim, Tae Ok;Park, Kwon Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.5
    • /
    • pp.639-643
    • /
    • 2015
  • In this study, we cloned and sequenced the 15,204-bp DNA region containing the gene cluster for urease production from the chromosome of the environmental Photobacterium sp. strain HA-2. We identified 15 open reading frames (ORFs) and the G+C content was 40.3%. The urease gene cluster of Photobacterium sp. strain HA-2 consisted of seven genes, namely, ureDABCEF and ureG. There were five ORFs of urease genes in the opposite direction, which were homologous to the nickel transport operons (nik) of Vibrio parahaemolyticus and Escherichia coli. The genetic organization and sequences of the urease genes of Photobacterium sp. strain HA-2 resembled those found in Vibrio fischeri and V. parahaemolyticus.

Evaluation of Displacement Measurement Technique Using Laser Speckle and Digital Image Correlation Method (레이저 스페클과 디지털 화상관련법을 이용한 변위 측정방법의 평가)

  • 강기주;이정현;전문창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.47-54
    • /
    • 2003
  • As a tool for strain measurement to work with screw driven or hydraulic material test systems, in which mechanical vibration is inherent, SSDG (Speckle Strain/Displacement Gage), ESP (Electronic Speckle Photography) and its 3-dimension version SDSP are evaluated for the theory and practical appliance. Through tension test of steel strips, their validity and shortcomings are examined. As the results, it has been shown that, although SSDG and ESP provide direct measurement of in-plane strain in one direction, they are so sensitive to the out-plane displacement. On the other hand, SDSP which is aided with DIC (Digital Image Correlation) technique to trace the movement of the speckles provides not only in-plane 2-dimensional displacement field, but also out-of-plane displacement simultaneously. However, because the DIC is time-consuming, not automated yet and it needs post-processing to evaluate strain from the displacement field, SDSP appears to be not adequate as a real time sensor.

Effects of temperature on the ratcheting behavior of pressurized 90° elbow pipe under force controlled cyclic loading

  • Chen, Xiaohui;Wang, Xingang;Chen, Xu
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.473-485
    • /
    • 2017
  • Ratcheting behavior of $90^{\circ}$ elbow piping subject to internal pressure 20 MPa and reversed bending 20 kN was investigated using experimental method. The maximum ratcheting strain was found in the circumferential direction of intrados. Ratcheting strain at flanks was also very large. Moreover, the effect of temperature on ratcheting strain of $90^{\circ}$ elbow piping was studied through finite element analysis, and the results were compared with room condition ($25^{\circ}$). The results revealed that ratcheting strain of $90^{\circ}$ elbow piping increased with increasing temperature. Ratcheting boundary of $90^{\circ}$ elbow piping was determined by Chaboche model combined with C-TDF method. The results revealed that there was no relationship between the dimensionless form of ratcheting boundary and temperature.

Development of a strain gage with a temperature compensator for hull stress measurement (온도보상기를 갖는 선체응력 계측용 스트레인 게이지의 개발)

  • 하윤수;류길수;박석주;박석배
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.3
    • /
    • pp.49-54
    • /
    • 1997
  • It is very important to measure and monitor hull stress which is caused by a buoyant force and a weight of cargo for safety of ship. However, an exact measurement of hul stress, using the traditional strain gage which is made of metal or semiconductor, is very difficult, because a ship would be exposed by the severe temperature environment of $-20 ^{\circ}C$ to $80 ^{\circ}C$. This paper propose a new concept strain gage which can improve accuracy and compensage effectively affects due to temperature. The strain gage is consists of two parts. One is the Hull Deformation Amplifier which introuce several lever and link system, and another is a transducer converting distance into voltage signal. The HDA measure the amount of deformation and amplify it. And a lever and link system of the HDA is introduced for compensating temperature deformation by installing in perpendicular direction without stress. This paper also reports on the results of the experiments to verify linearity of the strain gage.

  • PDF

Analysis of Plastic Deformation Behavior during Groove pressing (Groove Pressing 공정을 통한 소성 변형 거동 연구)

  • Yoon, S.C.;Krishnaiah, A.;Chakkingal, U.;Kim, H.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.425-426
    • /
    • 2008
  • Elasto-plastic finite element analysis was carried out for analyzing the severe plastic deformation behavior of copper specimens during groove pressing. Deformation localization was studied in terms of strain variations along the longitudinal direction. Plastic strain is lower at the local interface between the shear and the flat regions, which receive very little shear during the pressing cycle. Strain localization is more intensified with the number of rove pressing cycles, although the average strain level increases.

  • PDF

Study on the Influence of Die Corner Radius for Deep Drawing of Elliptical Product of Automobile (자동차용 타원형 디프 드로잉 제품의 다이 반경에 관한 연구)

  • 허영민;박동환;강성수
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.668-675
    • /
    • 2002
  • The circles deform into various shape during deformation, the major and minor axes of which indicate the direction of the major and minor principal strains. Likewise, the measured dimensions are used to determine the major and minor principal strain magnitudes. This circular grid technique of measuring strains can be used to diagnose the causes of necking and fracture in industrial practice and to investigate whether these defects were caused by material property variation, changes in lubrication, of incorrect press settings. In non-axisymmetric deep drawing, three modes of forming regimes are found: draw, stretch, plane strain. The stretch mode for non-axisymmetric deep drawing could be defined when the major and minor strains are positive. The draw mode could be defined when the major strain is positive and minor strain is negative, and plane strain mode could be defined when the major strain is positive and minor strain is zero. Through experiments the draw mode was shown on the wall and flange are one of a drawn cup, while the plane strain and the stretch mode were on the punch head and the punch corner area respectively, We observed that the punch load of elliptical deep drawing was decreased according to increase of die corner radius and the thickness deformation of minor side was more large than major side.