• 제목/요약/키워드: strain direction

검색결과 721건 처리시간 0.027초

CFTM 방법을 이용한 Si 박막과 격자불일치 전위결함의 변형률 분포에 대한 고찰 (Investigation of Strain Field on a Misfit Dislocation in a Strained Si Layer Using the CFTM Method)

  • 장원재
    • 한국전기전자재료학회논문지
    • /
    • 제30권12호
    • /
    • pp.757-761
    • /
    • 2017
  • The computational fourier-transform moire (CFTM) method has been briefly explained and this method was used to perform strain analysis of a misfit dislocation in a strained $Si/Si_{0.55}Ge_{0.45}$ layer. An essential advantage of the CFTM method is that it does not require unwrapping, such that errors due to improper unwrapping can be excluded. The analysis results revealed that the Si layer was grown with tensile stress on $Si_{0.55}Ge_{0.45}$ and lattice constant of the Si layer along the growth direction was 1.9% smaller than that of $Si_{0.55}Ge_{0.45}$. On the other hand, strain of the misfit dislocation in the strained $Si/Si_{0.55}Ge_{0.45}$ layer was maximum at the dislocation core due to an extra half-plane and the $e_{xx}$ and $e_{yy}$ values were positive and negative, respectively, along the direction of a burgers vector.

Preliminary investigation of Ic homogeneity along the longitudinal direction of YBCO coated conductor tape under tensile loading

  • Dizon, J.R.C.;Oh, S.S.;Sim, K.D.;Shin, H.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권2호
    • /
    • pp.24-28
    • /
    • 2013
  • In this study, the homogeneity of critical current, $I_c$, along the lengthwise direction in the coated conductor (CC) tape under uniaxial tension was investigated using a multiple voltage tap configuration. Initially, a gradual and homogeneous $I_c$ degradation occurred in all subsections of the tape up to a certain strain value. This was followed by an abrupt $I_c$ degradation in some subsections, which caused scattering in $I_c$ values along the length with increasing tension strain. The $I_c$ degradation behaviour was also explained through n-value as well as microstructure analyses. Subsections showed $I_c$ scattering corresponding to damaged areas of the CC tape revealed that transverse cracks were distributed throughout the gauge length. This homogeneous $I_c$ degradation behaviour under tension is similar with the case under torsion strain but different with the case under hard bending which were previously reported. This behaviour is also different with the case using Bi-2223 HTS tapes under tension strain.

Hill48 이차 항복식을 이용한 변형률 속도에 따른 수정된 항복곡면의 구성 (Construction of Modified Yield Loci with Respect to the Strain Rates using Hill48 Quadratic Yield Function)

  • 이창수;배기현;김석봉;허훈
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.56-60
    • /
    • 2010
  • Since the forming process involves the strain rate effect, a yield function considering the strain rate is indispensible to predict the accurate final blank shape in the forming simulation. One of the most widely used in the forming analysis is the Hill48 quadratic yield function due to its simplicity and low computing cost. In this paper, static and dynamic uni-axial tensile tests according to the loading direction have been carried out in order to measure the yield stress and the r-value. Based on the measured results, the Hill48 yield loci have been constructed, and their performance to describe the plastic anisotropy has been quantitatively evaluated. The Hill48 quadratic yield function has been modified using convex combination in order to achieve accurate approximation of anisotropy at the rolling and transverse direction.

변형 해석을 위한 Dual-beam Shearography (Non-Contacted Strain Analysis by Dual-beam Shearography)

  • 김경석;정성욱;장호섭;최태호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.400-403
    • /
    • 2002
  • This paper presents a shearographic technique for measuring in-plane strains. During the measurement, the test object is illuminated alternately with two laser beams, symmetrically with respect to the viewing direction. Employing a phase shift technique, the phase distributions due to object deformation for each beam are obtained separately. The difference of the two phase distributions depicts the derivative of in-plane surface displacements. The technique is equivalent to a system of many strain gages.

  • PDF

Impact of Strain Effects on Hole Mobility and Effective Mass in the p-Channel Nanowire Cross-Section

  • Jang, Geon-Tae
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제6회(2017년)
    • /
    • pp.424-427
    • /
    • 2017
  • This study investigated the effect of strain on hole mobility and hole effective mass in a p-channel rectangular nanowire with two-dimensional confinement. We obtained the valence energy band structure using the six-band k.p method and calculated the mobility and effective mass of the hole in the [100] direction taking the strain effect into account in the inversion region. The hole mobility of strained silicon was calculated using Kubo-Greenwood formalism. As a result, it showed good performance compared to relaxed silicon, but its magnitude was insignificant.

  • PDF

인발 봉재의 반경방향 불균일 변형률 평가 (Evaluation of Radial Direction Non-uniform Strain in Drawn Bar)

  • 이성민;이인규;이성윤;정명식;문영훈;이상곤
    • 소성∙가공
    • /
    • 제29권6호
    • /
    • pp.356-361
    • /
    • 2020
  • In general, the drawing process is performed in a multi-pass to meet the required shape and cross section. In the drawn material, the surface strain is relatively higher than the center due to the direct contact with the die. Therefore, a non-uniform strain distribution appears in the surface of the material where the strain is concentrated and the center having a relatively low strain, thus it is difficult to predict the strain in the drawn material. In this study, the non-uniform strain distribution was evaluated using a finite element analysis and the non-uniform strain distribution model based on the upper bound method. In addition, the relationship between the hardness and the strain was established through a simple compression test to evaluate the distribution of the strain in the experimentally multi-pass drawn bar.

2024-T3 A1 합금의 이방성이 피로균열진전속도와 정류거동에 미치는 영향 (Effect of Anisotropy on Fatigue Crack Propagation Rate and Arrest Behavior with 2024-T3 Alumunum Alloy)

  • 오세욱;김태형;오정종
    • 한국해양공학회지
    • /
    • 제7권1호
    • /
    • pp.124-132
    • /
    • 1993
  • In order to examine the effect of anisotropy and stress ratio on fatigue crack propagation rate and opening-closing behavior and also arrest behavior by single tension peak overload, the fatigue tests of constant amplitude atress and single tension peak overload adding to cycle of constant amplitude were carried out in stress ratio of -0.4, -0.2, and 0.4 with materials of T-L and L-T directions in 2024-T3 aluminum alloy plate. Crack opening-closing begavior were measured by the compliance method using COD gage and strain gage. In case of the crack opening-closing behavior was measured by strain gage, the effect of stress ratio is unchangeable. But in the case of COD gage, that is remarkably decreased. Fictitious effective stress intensity factor(U sub(f)) and effective stress intensity factor ratio(U) in L-T direction was higher than those in T-L direction and also threshold arrest overload ratio incrased as stress ratio decreased and that of T-L direction was higher than that in L-T direction.

  • PDF

이속압연된 Cu-3.0Ni-0.7Si 합금의 어닐링에 따른 두께방향으로의 미세조직 및 기계적 특성 변화 (Change in Microstructure and Mechanical Properties through Thickness with Annealing of a Cu-3.0Ni-0.7Si Alloy Deformed by Differential Speed Rolling)

  • 이성희
    • 한국재료학회지
    • /
    • 제28권5호
    • /
    • pp.295-300
    • /
    • 2018
  • Effects of annealing temperature on the microstructure and mechanical properties through thickness of a Cu-3.0Ni-0.7Si alloy processed by differential speed rolling are investigated in detail. The copper alloy with a thickness of 3 mm is rolled to a 50 % reduction at ambient temperature without lubricant and subsequently annealed for 0.5 h at $200-900^{\circ}C$. The microstructure of the copper alloy after annealing is different in the thickness direction depending on the amount of the shear and compressive strain introduced by the rolling; the recrystallization occurs first in the upper roll side and center regions which are largely shear-deformed. The complete recrystallization occurs at an annealing temperature of $800^{\circ}C$. The grain size after the complete recrystallization is finer than that of the conventional rolling. The hardness distribution of the specimens annealed at $500-700^{\circ}C$ is not uniform in the thickness direction due to partial recrystallization. This ununiformity of hardness corresponds well to the amount of shear strain in the thickness direction. The average hardness and ultimate tensile strength has the maximum values of 250 Hv and 450 Mpa, respectively, in the specimen annealed at $400^{\circ}C$. It is considered that the complex mode of strain introduced by rolling directly affects the microstructure and the mechanical properties of the annealed specimens.

레이저 스페클을 이용한 재료 변형 측정 (Measurement of Material Deformation Using Laser Speckle)

  • 전문창;강기주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.688-694
    • /
    • 2002
  • As a tool for strain measurement to work with screw driven or hydraulic material test systems, in which mechanical vibration is inherent, SSDG(Speckle Strain/Displacement Gage), ESP(Electronic Speckle Photography) and its 3-dimension version SDSP are investigated for the theory and practical appliance. Through tension test of steel strips, their validity and shortcomings are examined. As the results, it has been shown that, although SSDG and ESP provide direct measurement of in-plane strain in one direction, they are so sensitive to the out-plane displacement. On the other hand, SDSP which is aided with DIC (Digital Image Correlation) technique to trace the movement of the speckles provides not only in-plane 2-dimensional displacement field, but also out-of-plane displacement simultaneously. However, because the DIC is time-consuming, not automated yet and it needs post-processing to evaluate strain from the displacement field, SDSP appears to be not adequate as a real time sensor.

  • PDF

Determination of winding diameter based on bending strain analysis for REBCO coated conductor tapes

  • Leon, M.B. De;Dedicatoria, M.J.;Shin, H.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권2호
    • /
    • pp.8-11
    • /
    • 2012
  • In order to recognize the allowable bending diameter in coils, the strain as function of diameters is evaluated. The irreversible strain limits of $I_c$ in the easy and hard bending modes were measured. Strains were calculated at the coating film in the easy bending and at outer edge or inner edge in the hard bending of the CC tape, respectively. The tape geometry subjected to bending procedures is considered from the current industrial spool winding operation. Through the linear superposition of strain induced in different bending modes regarding the expressions, the appropriate design for critical bending diameter is suggested. Results proved that the existence of buckling resulting from bending in hard direction when applied strain exceeded 0.6% is possible. The depicted results showed that the strain limit as a viable parameter should be considered for future purposes.