• Title/Summary/Keyword: strain accumulation

Search Result 279, Processing Time 0.028 seconds

Construction of spDbp5 Null Mutants Defective in mRNA Export (분열효모에서 spDbp5 유전자의 결실돌연변이 제조와 기능에 대한 연구)

  • Bae, Jin-Ah;Cho, Hyun-Jin;Yoon, Jin-Ho
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.80-84
    • /
    • 2008
  • We constructed the null mutants of fission yeast Schizosaccharomyces pombe spDbp5 gene that is homologous to DEAD-box RNA helicase DBP5 in budding yeast Saccharomyces cerevisiae, which plays important roles in mRNA export out of nucleus. A null mutant in an $h^+/h^+$ diploid strain was constructed by replacing the spDbp5-coding region with an $ura4^+$ gene using one-step gene disruption method. Tetrad analysis showed that the spDbp5 is essential for vegetative growth. The haploid spDbp5 null mutants harboring pREP81X-spDbp5 plasmid showed extensive $poly(A)^+$ RNA accumulation in the nucleus and decrease in the cytoplasm after repression of spDbp5 expression. These results suggest that spDbp5 is also involved in mRNA export from the nucleus.

Analysis of the Growth and Metabolites of a Pyruvate Dehydrogenase Complex-Deficient Klebsiella pneumoniae Mutant in a Glycerol-Based Medium

  • Xu, Danfeng;Jia, Zongxiao;Zhang, Lijuan;Fu, Shuilin;Gong, Heng
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.753-761
    • /
    • 2020
  • To determine the role of pyruvate dehydrogenase complex (PDHC) in Klebsiella pneumoniae, the growth and metabolism of PDHC-deficient mutant in glycerol-based medium were analyzed and compared with those of other strains. Under aerobic conditions, the PDHC activity was fourfold higher than that of pyruvate formate lyase (PFL), and blocking of PDHC caused severe growth defect and pyruvate accumulation, indicating that the carbon flux through pyruvate to acetyl coenzyme A mainly depended on PDHC. Under anaerobic conditions, although the PDHC activity was only 50% of that of PFL, blocking of PDHC resulted in more growth defect than blocking of PFL. Subsequently, combined with the requirement of CO2 and intracellular redox status, it was presumed that the critical role of PDHC was to provide NADH for the anaerobic growth of K. pneumoniae. This presumption was confirmed in the PDHC-deficient mutant by further blocking one of the formate dehydrogenases, FdnGHI. Besides, based on our data, it can also be suggested that an improvement in the carbon flux in the PFL-deficient mutant could be an effective strategy to construct high-yielding 1,3-propanediol-producing K. pneumoniae strain.

Antioxidant Activity of n-Butanol Fraction of Chaenomeles sinensis Fruit in Caenorhabditis elegans (모과 부탄올 분획의 예쁜꼬마선충 내의 항산화 효과)

  • Kim, Jun Hyeong;An, Chang Wan;Kim, Yeong Jee;Noh, Yun Jeong;Kim, Su Jin;Kim, Ju-Eun;Shrestha, Abinash Chandra;Ham, Ha-Neul;Leem, Jae-Yoon;Jo, Hyung-Kwon;Kim, Dae-Sung;Moon, Kwang Hyun;Lee, Jeong Ho;Jeong, Kyung Ok;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • Chaenomeles sinensis (Thouin) Koehne fruit (Rosaceae) has been used as a traditional medicine in Korea, Japan and China to treat sore throat, diarrhea and inflammation. The ethanol extract of C. sinensis fruit was successively partitioned as methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions. Among those fractions, the n-butanol fraction showed the most potent DPPH radical scavenging and superoxide quenching activities. To verify antioxidant activities, the n-butanol fraction was checked the activities of superoxide dismutase (SOD) and catalase activities, and intracellular ROS levels and oxidative stress tolerance in Caenorhabditis elegans. Furthermore, to see if increased stress tolerance of worms by treating of the n-butanol fraction was due to regulation of stress-response gene, we quantified SOD-3 expression using transgenic strain. Consequently, the n-butanol fraction elevated SOD and catalase activities of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Moreover, the n-butanol fraction-treated CF1553 worms exhibited significantly higher SOD-3::GFP intensity.

Characterization of Polyphosphate Kinase Gene in Serratia marcescens (Serratia marcescens의 Polyphosphate Kinase 유전자 특성)

  • Yang Lark Choi;Seung Jin Lee;Ok Ryul Song;Soo Yeol Chung;Young Choon Lee
    • Journal of Life Science
    • /
    • v.10 no.4
    • /
    • pp.397-402
    • /
    • 2000
  • Polyphosphate kinase catalyzes the formation of polyphosphate from ATP. To understand the mechanism of phosphate accumulation, the Serratia marcescens gene encoding ppk was cloned from the genomic library by the method of Southern hybridization. The hybridization positive DNA fragment region from pDH3 was subcloned into the expression vector. The ppk gene product, a polypeptide of 75 kDa, was confirmed by SDS-PAGE. Expression of the Serratia marcescens ppk is regulated by the catabolite repression system. The enzyme activity polyphosphate kinase was increased in the E. coli strain harboring plasmid pMH4 with ppk gene.

  • PDF

Anti-oxidative Effect of Epimedii Herba in Caenorhabditis elegans (음양곽의 예쁜꼬마선충 내의 항산화 효과)

  • Kim, Jun Hyeong;An, Chang Wan;Kim, Yeong Jee;Noh, Yun Jeong;Kim, Su Jin;Hwang, In Hyun;Jeon, Hoon;Cha, Dong Seok;Shin, Tae-Yong;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.4
    • /
    • pp.298-303
    • /
    • 2017
  • To know the anti-oxidative effect of Epimedii Herba (Berberidaceae), the methanol extract of this plant was investigated by using a Caenorhabditis elegans model system. The methanol extract of this plant showed relatively significant DPPH radical scavenging and superoxide quenching activities. The ethyl acetate soluble fraction of Epimedii Herba (EHE), which showed the most potent DPPH radical scavenging and superoxide quenching activities, was tested on its effects on superoxide dismutase (SOD), catalase, intracellular ROS, and oxidative stress tolerance in Caenorhabditis elegans. Furthermore, in order to verify that regulation of stress-response genes is responsible for the increased stress tolerance of the EHE treated C. elegans, we checked SOD-3 expression using a transgenic strain. As a result, the EHE increased SOD and catalase activities of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Besides, EHE-treated CF1553 worms showed higher SOD-3::GFP intensity than that of non-treated controls.

Characterization of the in vitro Activities of the P1 and Helper Component Proteases of Soybean mosaic virus Strain G2 and Tobacco vein mottling virus

  • Lim, Hyoun-Sub;Jang, Chan-Yong;Nam, Ji-Ryun;Li, Meijia;Hong, Jin-Sung;Bae, Han-Hong;Ju, Ho-Jong;Kim, Hong-Gi;Ford, Richard E.;Domier, Leslie L.
    • The Plant Pathology Journal
    • /
    • v.28 no.2
    • /
    • pp.197-201
    • /
    • 2012
  • Potyviruses express their RNA genomes through the production of polyproteins that are processed in host cells by three virus-encoded proteases. Soybean plants produce large amounts of protease inhibitors during seed development and in response to wounding that could affect the activities of these proteases. The in vitro activities of two of the proteases of Soybean mosaic virus (SMV) and Tobacco vein mottling virus (TVMV) were compared in the rabbit reticulocyte lysate in vitro translation system using synthetic RNA transcripts. Transcripts produced from SMV and TVMV cDNAs that included the P1 and helper component-protease (HC-Pro) coding regions directed synthesis of protein products that were only partially processed. Unprocessed poly-proteins were not detected from transcripts that included all of the P1, HC-Pro, P3 and portions of the cylindrical inclusion protein coding regions of either virus. Addition of soybean trypsin inhibitor to in vitro translation reactions increased the accumulation of the unprocessed polyprotein from TVMV transcripts, but did not alter the patterns of proteins produced from SMV. These experiments suggest that SMV-and TVMV-encoded proteases are differentially sensitive to protease inhibitors.

Computer aided failure prediction of reinforced concrete beam

  • Islam, A.B.M. Saiful
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.67-73
    • /
    • 2020
  • Traditionally used analytical approach to predict the fatigue failure of reinforced concrete (RC) structure is generally conservative and has certain limitations. The nonlinear finite element method (FEM) offers less expensive solution for fatigue analysis with sufficient accuracy. However, the conventional implicit dynamic analysis is very expensive for high level computation. Whereas, an explicit dynamic analysis approach offers a computationally operative modelling to predict true responses of a structural element under periodic loading and might be perfectly matched to accomplish long life fatigue computations. Hence, this study simulates the fatigue behaviour of RC beams with finite element (FE) assemblage presenting a simplified explicit dynamic numerical solution to show computer aided fatigue behaviour of RC beam. A commercial FEM package, ABAQUS has been chosen for this complex modelling. The concrete has been modelled as a 8-node solid element providing competent compression hardening and tension stiffening. The steel reinforcements are simulated as two-node truss elements comprising elasto-plastic stress-strain behaviour. All the possible nonlinearities are duly incorporated. Time domain analysis has been adopted through an automatic Newmark-β time incremental technique. The program consists of twelve RC beams to visualize the real behaviour during fatigue process and to obtain the reliability of the study. Both the numerical and experimental results indicate a redistribution of stresses along the time and damage accumulation of beam which severely affect the serviceability and ultimate capacity of RC beam. The output of the FEM analysis demonstrates good match with the experimental consequences which affirm the efficacy of the computer aided model. The controlled fatigue damage evolution at service fatigue load limits makes the FE model an efficient tool in predicting high cycle fatigue behaviour of RC structures.

Assay of Heat Stable Enterotoxin Producing E. coli (내열성장독소 생산 대장균의 판정)

  • Chang, Woo-Hyun;Kim, Moon-Gyo;Choi, Myung-Sik;Yang, Nam-Ung;Ko, Kwang-Wook;Seo, Jung-Ki
    • The Journal of the Korean Society for Microbiology
    • /
    • v.18 no.1
    • /
    • pp.53-58
    • /
    • 1983
  • Enterotoxigenic E. coli is one of causative agents of the infantile diarrhea and traveler's diarrhea. A modified infant mouse assay(IMA) was developed for the detection of heat stable enterotoxin (ST) of E. coli isolated from diarrheal and control infants and assay system was established with using enterotoxin producing reference strains. The supernatant of the 24 hour-shaking culture of E. coli in Casamino Acid Yeast Extract Salt Broth(CYES-2) was ingested orally into the 2-4 day old ICR mice. After the mice were kept at $25^{\circ}C$ for 4 hours, they were sacrificed and the gut weight body weight ratio(GW/BW) was taken as the index of fluid accumulation induced by heat stable enterotoxin of E. coli. The results obtained were as follows; 1. The GW/BW responses of IMA tested with enterotoxin reference strains of E. coli(E. coli O148H28:$ST^+LT^+$, E. coli $O78H^-:ST^+LT^+$, E. coli O15H11:$ST^-LT^+$, E. coli O1H7:$ST^-LT^-$) appeared ta be ST dose-dependent, and not LT-dependent. From the dose-response curve, $25{\mu}l$ of culture supernatant was determined as test amount of the IMA. 2. Frequency distribution of IMA result from 643 strain of E. coli showed normal distribution at low GW/BW ratio and dispersed pattern at high GW/BW ratio. The GW/BW ratios of $0.056{\pm}0.004(mean{\pm}SD)$ of normal distribution which distributed from 0.044 to 0.068(P<0.01) was considered as ST negative. Thus the GW/BW ratio above 0.069 could be regarded as ST positive.

  • PDF

Seismic resistance and mechanical behaviour of exterior beam-column joints with crossed inclined bars

  • Bakir, P.G.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.493-517
    • /
    • 2003
  • Attempts at improving beam-column joint performance has resulted in non-conventional ways of reinforcement such as the use of the crossed inclined bars in the joint area. Despite the wide accumulation of test data, the influence of the crossed inclined bars on the shear strength of the cyclically loaded exterior beam-column joints has not yet been quantified and incorporated into code recommendations. In this study, the investigation of joints has been pursued on two different fronts. In the first approach, the parameters that influence the behaviour of the cyclically loaded beam-column joints are investigated. Several parametric studies are carried out to explore the shear resisting mechanisms of cyclically loaded beam-column joints using an experimental database consisting of a large number of joint tests. In the second approach, the mechanical behaviour of joints is investigated and the equations for the principal tensile strain and the average shear stress are derived from joint mechanics. It is apparent that the predictions of these two approaches agree well with each other. A design equation that predicts the shear strength of the cyclically loaded exterior beam-column joints is proposed. The design equation proposed has three major differences from the previously suggested design equations. First, the influence of the bond conditions on the joint shear strength is considered. Second, the equation takes the influence of the shear transfer mechanisms of the crossed inclined bars into account and, third, the equation is applicable on joints with high concrete cylinder strength. The proposed equation is compared with the predictions of the other design equations. It is apparent that the proposed design equation predicts the joint shear strength accurately and is an improvement on the existing code recommendations.

Isolation and characterization of Vitreoscilla mutant defective in catalase-peroxidase hydroperoxidase I

  • Kim, Hee-Jung;Moon, Ja-Young;Lee, John-Hwa;Park, Kie-In
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.3
    • /
    • pp.291-304
    • /
    • 2007
  • Mutants of an obligate aerobic bacterium, Vitreoscilla, that have deficiency in heat-labile catalase-peroxidase hydroperoxidase I (HPI) were created by EMS treatment. The catalase-peroxidase HPI-deficient mutant showed substantially lower peroxidase activity in exponential and mid-stationary phase compared with the wild type strain. In late stationary phase, the mutant exhibited no peroxidase activity. Peroxidase deficiency in the mutant was revealed by polyacrylamide gels stained for peroxidase activity. Characteristically, catalase levels in the mutant increased about 14- and 8-fold during growth in the exponential and stationary phases, respectively, compared to those in the wild type, suggesting a compensatory effect for protection from $H_2O_2$ toxicity. The mutant showed differences in physiology from the wild type: retardation in growth rate and decrease in oxygen consumption. Both the wild type and the catalase-peroxidase HPI-deficient mutant of Vitreoscilla had lower growth rates in media containing increasing $H_2O_2$ concentrations. However, the mutant exhibited an additionally decreased growth rate after 6 to 8 h of growth compared to the wild type. The wild type was resistent up to 20 mM $H_2O_2$, whereas the mutant was very sensitive to high concentrations of exogenous $H_2O_2$. Although elevated catalase levels would provide protection of the bacteria from the deleterious effect of $H_2O_2$, it did not appear to be complete. Cell-free extracts of the mutant showed decreased NADH oxidation rates and higher accumulation of $H_2O_2$ during this oxidation. These results may account for the impaired growth and earlier onset of death phase by the catalase-peroxidase HPI-deficient mutant of Vitreoscilla.