• Title/Summary/Keyword: strain accumulation

Search Result 279, Processing Time 0.032 seconds

Adipocyte differentiation inhibition, whitening, antibacterial and antioxidant activities of extracts from Aloe vera by-product (알로에 베라 가공 부산물 추출물의 지방세포 분화억제, 미백, 항균 및 항산화 활성)

  • Lee, Seong-Hun;Eun, Chang-Ho;Baek, Jin-Hong;Kim, In-Jung
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.171-176
    • /
    • 2021
  • Aloe has been widely used as a cosmetic and medicinal plant. Until now, several effects such as antioxidant, anti-cancer, anti-diabetic, immunity and whitening of aloe gel extract have been reported, but research on aloe by-products occurring in food processing has not been actively conducted. In this study, we investigated whether the aloe by-product extract from food processing could be used as a functional biomaterial. Cytotoxicity was not seen in both the mixer and press extracts. Inhibition of 3T3-L1 adipocyte differentiation was detected only in the mixer extract and not in the press. It was confirmed that hyaluronic acid accumulation and tyrosinase inhibition increased according to the treatment concentration of the mixer extract. The antimicrobial activity of the mixer extract was observed in the Porphyromonas gingivalis strain, but not in the Streptococcus mutans strain. Antioxidant activity through DPPH and SOD analysis increased with the concentration of the mixer extract. In summary, it was confirmed that the mixer extract of aloe by-products has the effect of inhibiting adipocyte differentiation, moisturizing, whitening, and antioxidant, suggesting the possibility of using it as a functional bio-material for health drinks or beauty masks.

Draft Genome Assembly and Annotation for Cutaneotrichosporon dermatis NICC30027, an Oleaginous Yeast Capable of Simultaneous Glucose and Xylose Assimilation

  • Wang, Laiyou;Guo, Shuxian;Zeng, Bo;Wang, Shanshan;Chen, Yan;Cheng, Shuang;Liu, Bingbing;Wang, Chunyan;Wang, Yu;Meng, Qingshan
    • Mycobiology
    • /
    • v.50 no.1
    • /
    • pp.66-78
    • /
    • 2022
  • The identification of oleaginous yeast species capable of simultaneously utilizing xylose and glucose as substrates to generate value-added biological products is an area of key economic interest. We have previously demonstrated that the Cutaneotrichosporon dermatis NICC30027 yeast strain is capable of simultaneously assimilating both xylose and glucose, resulting in considerable lipid accumulation. However, as no high-quality genome sequencing data or associated annotations for this strain are available at present, it remains challenging to study the metabolic mechanisms underlying this phenotype. Herein, we report a 39,305,439 bp draft genome assembly for C. dermatis NICC30027 comprised of 37 scaffolds, with 60.15% GC content. Within this genome, we identified 524 tRNAs, 142 sRNAs, 53 miRNAs, 28 snRNAs, and eight rRNA clusters. Moreover, repeat sequences totaling 1,032,129 bp in length were identified (2.63% of the genome), as were 14,238 unigenes that were 1,789.35 bp in length on average (64.82% of the genome). The NCBI non-redundant protein sequences (NR) database was employed to successfully annotate 11,795 of these unigenes, while 3,621 and 11,902 were annotated with the Swiss-Prot and TrEMBL databases, respectively. Unigenes were additionally subjected to pathway enrichment analyses using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups of proteins (COG), Clusters of orthologous groups for eukaryotic complete genomes (KOG), and Non-supervised Orthologous Groups (eggNOG) databases. Together, these results provide a foundation for future studies aimed at clarifying the mechanistic basis for the ability of C. dermatis NICC30027 to simultaneously utilize glucose and xylose to synthesize lipids.

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Parametric Studies (비탄성 국부좌굴을 고려한 철골 모멘트 접합부의 회전능력에 대한 변수 연구)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.625-632
    • /
    • 2008
  • In the companion paper (Model Development), an analytical model estimating the available rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames was proposed. In this paper, two limit states were considered as the connection rotation capacity criteria: (i) strength degradation failure when the strength falls below the nominal plastic strength due to the local buckling of the beam's cross-section and (ii) low-cycle fatigue fracture caused by plastic strain accumulation at the buckled flange after only a few cycles of high-amplitude deformation. A series of analyses are conducted using the proposed model with two limit states under monotonic and cyclic loadings. Beam section geometric parameters, such as flange and web slenderness ratios, varied over the practical ranges of H-shapedbeams to observe their effect on the rotation capacity and low-cycle fatigue life of pre-qualified WUF-W connections.

Penicillium griseofulvum F1959, High-Production Strain of Pyripyropene A, Specific Inhibitor of Acyl-CoA: Cholesterol Acyltransferase 2

  • Choi, Jung-Ho;Rho, Mun-Chual;Lee, Seung-Woong;Choi, Ji-Na;Lee, Hee-Jeong;Bae, Kyung-Sook;Kim, Koan-Hoi;Kim, Young-Kook
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1663-1665
    • /
    • 2008
  • Acyl-coenzyme A: cholesterol acyltransferase (ACAT) catalyzes cholesterol esterification and plays an important role in the intestinal absorption of cholesterol, hepatic production of lipoproteins, and accumulation of cholesteryl ester within cells. During the course of screening to find ACAT inhibitors from microbial sources, the present authors isolated pyripyropene A from Penicillium griseofulvum F1959. Pyripyropene A, an ACAT2-specific inhibitor, has already been produced from Aspergillus fumigatus. Yet, Aspergillus fumigatus is a pathogen and only produces a limited amount of pyripyropene A, making the isolation of pyripyropene A troublesome. In contrast, Penicillium griseofulvum F1959 was found to produce approximately 28 times more pyripyropene A than Aspergillus fumigatus, plus this report also describes the ideal conditions for the production of pyripyropene A by Penicillium griseofulvum F1959 and its subsequent purification.

A Novel Organotellurium Compound (RT-01) as a New Antileishmanial Agent

  • Cantalupo Lima, Camila Barbara;Arrais-Silva, Wagner Welber;Rodrigues Cunha, Rodrigo Luiz Oliveira;Giorgio, Selma
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.3
    • /
    • pp.213-218
    • /
    • 2009
  • Leishmaniasis is a neglected disease and endemic in developing countries. A lack of adequate and definitive chemotherapeutic agents to fight against this infection has led to the investigation of numerous compounds. The aim of this study was to investigate the effect of RT-01, an organotellurane compound presenting biological activities, in 2 experimental systems against Leishmania amazonensis. The in vitro system consisted of promastigotes and amastigotes forms of the parasite, and the in vivo system consisted of L.amazonensis infected BALB/c mice, an extremely susceptible mouse strain. The compound proved to be toxic against promastigotes and amastigotes. The study also showed that treatment with RT-01 produces an effect similar to that treatment with the reference antimonial drug, Glucantime, in L.amazonensis infected mice. The best results were obtained following RT-01 intralesional administration (720 ${\mu}g$/kg/day); mice showed significant delay in the development of cutaneous lesions and decreased numbers of parasites obtained from the lesions. Significant differences in tissue pathology consisted mainly of no expressive accumulation of inflammatory cells and wellpreserved structures in the skin tissue of RT-01-treated mice compared with expressive infiltration of infected cells replacing the skin tissue in lesions of untreated mice. These findings highlight the fact that the apparent potency of organotellurane compounds, together with their relatively simple structure, may represent a new avenue for the development of novel drugs to combat parasitic diseases.

Differential expression and in situ localization of a pepper defensin (CADEFl) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsium annuum

  • Do, Hyun-Mee;Lee, Sung-Chul;Jung, Ho-Won;Hwang, Byung-Kook
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.78.2-79
    • /
    • 2003
  • Pepper defensin ( CADEFl) clone was isolated from cDNA library constructed from pepper leaves infected with avirulent strain Bv5-4a of Xanthomonu campestris pv. vesicatoria. The deduced amino acid sequence of CADEFl is 82-64% identical to that of other plant defensins. Putative protein encoded by CADEFl gene consists of 78 amino acids and 8 conserved cysteine residues to form four structure-stabilizing disulfide bridges. Transcription of the CADEF1 gene was earlier and stronger induced by X campestris pv. vesicatoria infection in the incompatible than in the compatible interaction. CADEF1 mRNA was constitutively expressed in stem, root and green fruit of pepper. Transcripts of CADEFl gene drastically accumulated in pepper leaf tissues treated With Salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), hydrogen Peroxide (H$_2$O$_2$), benzothiadiazole (BTH) and DL-${\beta}$-amino-n-butyric acid (BABA). In situ hybridization results revealed that CADEF1 mRNA was localized in the phloem areas of vascular bundles in leaf tissues treated with exogenous SA, MeJA and ABA. Strong accumulation of CADEF1 mRNA occurred in pepper leaves in response to wounding, high salinity and drought stress. These results suggest that bacterial pathogen infection, abiotic elicitors and some environmental stresses may play a significant role in signal transduction pathway for CADEF1 gene expression.

  • PDF

Expression of $\beta$-Galactosidase Gene of Lactococcus lactis ssp. lactis ATCC 7962 in Lactococcus lactis ssp. lactis MG1363

  • Park, Rae-Jun;Lee, Jung-Min;Chang, Hae-Choon;Chung, Dae-Kyun;Lee, Jong-Hoon;Lee, Hyong-Joo;Kim, Jeong-Hwan
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.3
    • /
    • pp.153-159
    • /
    • 2000
  • A 4.4 kb DNA fragment encompassing lacA (galactoside acetyltransferase) and lacZ($\beta$-galactosidase) genes from Lactococus lactis ssp. lactis ATCC 7962 (L. lactis 7962) was introduced ito a Lac strain, Lactococcus lactis ssp. lactis MG1363 (L. lactis MG1363) by using a lactococcal expression vector, pMG36e and expression level of lacZ was examined. Growth rates and $\beta$-galactosidase ($\beta$-gal) activities of MG1363 cells carrying recombinant plasmid, pMLZ3, on M17 broth containing different carbon sources (1%, w/v) were examined. Contrary to the expectations, MG1363 [pMLZ3] grown on lactose showed the lowest enzyme activity (17 units) and cells grown on galactose had the highest $\beta$-gal activity (41 units). Cells grown on glucose had intermediate activity (33 units). These activities are about one tenth of the values observed in L. lactis 7962 where lacZ is present as a single-copy gene in the chromosome. When the cellular concentrations of lacZ transcript were examined using slot blot hybridization, it was found that MG1363[pMLZ3] produced sufficient amounts of transcript. These results indicate that either proteolytic degradation of $\beta$-gal or other regulatory mechanism prevent the translation or accumulation of $\beta$-gal in L. lactis MG1363 cells. In regard to regulation, the presence of the ccpA gene in L. lactis MG1363 was confirmed by Southern blot.

  • PDF

Biodegradation of Aromatic Compounds by Nocardioform Actinomycetes

  • CHA CHANG-JUN;CERNIGLIA CARL E.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.157-163
    • /
    • 2001
  • Mycolic acid-containing gram-positive bacteria, so called nocardioform actinomycetes, have become a great interest to environmental microbiologists due to their metabolic versatility, multidegradative capacity and potential for bioremediation of priority pollutants. For example, Rhodococcus rhodochrous N75 was able to metabolize 4-methy1catechol via a modified $\beta$-ketoadipate pathway whereby 4-methylmuconolactone methyl isomerase catalyzes the conversion of 4-methylmuconolactone to 3-methylmuconolactone in order to circumvent the accumulation of the 'dead-end' metabolite, 4-methylmuconolactone. R. rhodochrous N75 has also shown the ability to transform a range of alkyl-substituted catechols to the corresponding muconolactones. A novel 3-methylmuconolactone-CoAsynthetase was found to be involved in the degradation of 3-methylmuconolactone, which is not mediated in a manner analogous to the classical $\beta$-ketoadipate pathway but activated by the addition of CoA prior to hydrolysis of lactone ring, suggesting that the degradative pathway for methylaromatic compounds by gram-positive bacteria diverges from that of proteobacteria. Mycobacterium sp. Strain PYR-l isolated from oil-contaminated soil was capable of mineralizing various polyaromatic hydrocarbons (PAHs), such as naphthalene, phenanthrene, pyrene, fluoranthrene, 1-nitropyrene, and 6-nitrochrysene. The pathways for degradation of PAHs by this organism have been elucidated through the isolation and characterization of chemical intermediates. 2-D gel electrophoresis of PAH-induced proteins enabled the cloning of the dioxygenase system containing a dehydrogenase, the dioxygenase small ($\beta$)-subunit, and the dioxygenase large ($\alpha$)-subunit. Phylogenetic analysis showed that the large a subunit did not cluster with most of the known sequences except for three newly described a subunits of dioxygenases from Rhodococcus spp. and Nocardioides spp. 2-D gel analysis also showed that catalase-peroxidase, which was induced with pyrene, plays a role in the PAH metabolism. The survival and performance of these bacteria raised the possibility that they can be excellent candidates for bioremediation purposes.

  • PDF

Reversible histoarchitecture study of testis and cauda epididymis and changes in cauda epididymal epithelial cell types on treatment with benzene extract of Ocimum sanctum leaves in albino rats

  • Ahmed, Mukhtar;Ahamed, R Nazeer;Aladakatti, RH;Deepthi, KR
    • Advances in Traditional Medicine
    • /
    • v.8 no.2
    • /
    • pp.111-124
    • /
    • 2008
  • In the present study, an attempt has been made to assess whether the effect of benzene extract of Ocimum sanctum leaves on the ultrastructural changes in the epithelial cells of the cauda epididymis, its subsequent recovery in the seminiferous epithelium and fertility of male albino rats. Wistar strain male albino rats were orally administered benzene extract of 250 mg/kg body weight of O. sanctum leaves followed by subsequent recovery maintaining suitable controls for 48 days. Results indicate decrease in the weights of testis, epididymis and seminal vesicles. Other accessory organs were not affected. Total count, cell and nuclei diameters of germ cells and Leydig cells were reduced. Cauda epididymis exhibited significant reduction in epithelial height and nuclei diameter of epithelial cells. Cells showed vacuolization with exhibit of signs of degeneration. Ultra study revealed that, in general, the cauda epididymis was affected and in particular, the principal, clear and basal cells were highly disturbed. Further, there was decrease in the size of lipid droplets, mitochondria, Golgi complex, endoplasmic reticulum and accumulation of lysosomal bodies. Fertility performance test showed no implantation in female rats mated with O. sanctum treated rats. Moreover, their recovery after withdrawal of treatment was observed suggesting that the effect of the treatment is transient and reversible. A recovery period resulted in normal spermatogenesis and fertility, suggesting reversible antispermatogenic and antifertility effects of the plant.

Rewiring carbon catabolite repression for microbial cell factory

  • Vinuselvi, Parisutham;Kim, Min-Kyung;Lee, Sung-Kuk;Ghim, Cheol-Min
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.59-70
    • /
    • 2012
  • Carbon catabolite repression (CCR) is a key regulatory system found in most microorganisms that ensures preferential utilization of energy-efficient carbon sources. CCR helps microorganisms obtain a proper balance between their metabolic capacity and the maximum sugar uptake capability. It also constrains the deregulated utilization of a preferred cognate substrate, enabling microorganisms to survive and dominate in natural environments. On the other side of the same coin lies the tenacious bottleneck in microbial production of bioproducts that employs a combination of carbon sources in varied proportion, such as lignocellulose-derived sugar mixtures. Preferential sugar uptake combined with the transcriptional and/or enzymatic exclusion of less preferred sugars turns out one of the major barriers in increasing the yield and productivity of fermentation process. Accumulation of the unused substrate also complicates the downstream processes used to extract the desired product. To overcome this difficulty and to develop tailor-made strains for specific metabolic engineering goals, quantitative and systemic understanding of the molecular interaction map behind CCR is a prerequisite. Here we comparatively review the universal and strain-specific features of CCR circuitry and discuss the recent efforts in developing synthetic cell factories devoid of CCR particularly for lignocellulose-based biorefinery.