• Title/Summary/Keyword: strain accumulation

Search Result 279, Processing Time 0.028 seconds

Effects of Nitrogen and Oxygen Supply on Production of $Poly-{\beta}-Hydroxybutyrate$ in Azotobacter chroococcum

  • Lee, In-Young;Stegantseva, Ellen-M.;Savenkova, Ludmila;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.100-104
    • /
    • 1995
  • Production of $poly-{\beta}-hydroxybutyrate$ (PHB) in a strain of Azotobacter chroococcum, a nitrogen-fixing bacteria, was investigated at various levels of nitrogen and oxygen. Feeding nitrogen source increased both cell growth and PHB accumulation. Oxygen supply appeared to be one of the most important operating parameters for PHB production. Both cell growth and PHB accumulation increased with the sufficient supply of air in the fed-batch fermentation of the strain. However, it was also noted that keeping the oxygen level under limited condition was critical to achieve high PHB productivity. A high titer of PHB (52 g/l) with a high cellular content (60%) was obtained after 48 hr of fed-batch operation by controlling the oxygen supply. Dual limitation of nitrogen and oxygen did not further increase the PHB accumulation probably due to the greater demand for reducing power and ATP for nitrogen fixation.

  • PDF

The Inhibitory Effects of Intestine-oriented Lactobacillus sp. KP-3 on the Accumulation of Heavy Metals in Sprague Dawley rats (Sprague Dawley 쥐에서 장내 유래 Lactobacillus sp. KP-3의 중금속 축적 저해 효과)

  • Kim, Shin Yeon;Kim, Hyun Pyo
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.164-173
    • /
    • 2015
  • To investigate the effect of lactic acid bacteria on the heavy metal adsorption from internal organs and blood, lactic acid bacteria were isolated from human feces. Some strains resistant to heavy metals were selected by incubation in agar media containing each of chrome and cadmium salts. Among them, a strain named KP-3 was ultimately chosen due to its higher growth rate in selective broth medium containing the heavy metals at the concentration of 0.01%. The strain was identified as Lactobacillus sp. based on its morphological, cultural and physiological characteristics. For evaluating the ability to prevent accumulation of heavy metals by selected Lactobacillus sp. strain in vivo, Sprague Dawley rats were fed with heavy metal salts (cadmium, chrome and lead) with or without cultured whole cells for 7 days. The amounts of heavy metals accumulated in liver, kidney and blood were analyzed. As a result, chrome was accumulated to kidney mostly, and lead was frequently found in liver and kidney. Experimental group (rats fed with lactic acid bacteria) showed less accumulation of heavy metal than control group (rats fed with saline solution). The inhibition rates of heavy metal accumulation were calculated to 41.8% (Cd), 33.4% (Cr) and 44.2% (Pb). Especially, feeding lactic acid bacteria strongly reduced accumulation of cadmium in blood. The results showed that feeding Lactobacillus sp. KP-3 could prevent the bioaccumulation of heavy metals in the living body.

A Study on the Mechanical Behavior of Welded Parts in Thick Plate during Post Welding Heat Treatment (厚板熔接部의 應力除去 熱處理時의 力學的 擧動에 關한 硏究)

  • 방한서
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.103-111
    • /
    • 1993
  • Recently, several high-tensile steels(e.g. 80kg and above, $2^{1/4}Cr$-1Mo)having good quality to high temperature and pressure-resistance are widely used to construct petroleum-plant and pressure vessel of heat or nuclear-power plant. However, in the steels, reheating crack at grain boundaries of the heat affected zone(HAZ) occures during post welding heat treatment(PWHT)to remove welding residual stress. In order to study theoretically the characteristics of reheating crack created by PWHT, the computer program of three-dimensional thermal-elasto-plasto-creep analysis based on finite element method are developed, and then the mechanical behavior(history of creep strain accumulation and stress relaxation, etc)of welded join in thick plate during PWTH is clarified by the numerical results.

  • PDF

Possible Negative Effect of Pigmentation on Biosynthesis of Polyketide Mycotoxin Zearalenone in Gibberella zeae

  • Jung Sun-Yo;Kim Jung-Eun;Yun Sung-Hwan;Lee Yin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1392-1398
    • /
    • 2006
  • We investigated a possible coordination between the biosyntheses of two polyketides in the cereal head blight fungus Gibberella zeae, zearalenone (ZEA) and aurofusarin (AUR), which are catalyzed by the polyketide synthases (PKS) PKS4/PKS13 and PKS12, respectively. To determine if the production of one polyketide influences that of the other, we used four different transgenic strains of G zeae; three were deficient for either ZEA or AUR or both, and one was an AUR-overproducing strain. The mycelia of both the wild-type and ${\Delta}PKS4$ strain deficient for ZEA produced AUR normally, whereas the mycelia of both the ${\Delta}PKS12$ and ${\Delta}PKS4::{\Delta}PKS12$ strain showed no AUR accumulation. All the examined deletion strains caused necrotic spots on the surface of com kernels and were found to produce the nonpolyketide mycotoxins trichothecenes to the same amount as the wild-type strain. In contrast, the AUR-deficient ${\Delta}PKS12$ strains produced greater quantities of ZEA and its derivatives than the wild-type progenitor on both a rice substrate and a liquid medium; the AUR-overproducing strain did not produce ZEA on either medium. Furthermore, the expression of both PKS4 and PKS13 was induced earlier in the ${\Delta}PKS12$ strains than in the wild-type strain, and there was no difference in the transcription of PKS12 between the two strains. Therefore, these results indicate that the ZEA biosynthetic pathway is negatively regulated by the accumulation of another polyketide (AUR) in G zeae.

Mechanism of Cadmium Accumulation into the Cell of Cadmium-Ion Tolerant Yeast (카드뮴 내성 효모의 세포내 카드뮴 축적 기작)

  • 유대식;송형익;정기택
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.233-238
    • /
    • 1990
  • The mechanism of intracellular accumulation of cadmium in a cadmium-ion tolerant yeast, Hansenula ammala B-7, which is an extreme cadmium tolerant strain and has the ability to take up a large amount of cadmium was investigated. The amounts of cadmium taken up by the scalded yeast cells were 2 to 3 times more than the value of the living cells. The living Hansenula anomala B-7 cells adsorbed 74% of cadmium taken up onto the other layer of the cells and 26% of it accumulated inside the cells. But the scalded cells adsorbed 98.3% of cadmium taken up and accumulated 1.7% of it inside the cells. A cadmium uptake and its accumulation were accelerated up to 162.3% and 275.4% by Triton X-100 in the living cells, respectively. Whereas in the scalded cell cadmium uptake was not affected by Triton X-100. Furthermore the cadmium uptake and its accumulation were strongly inhibited by metabolic inhibitors like 2,4-dinitrophenol, sodium azide and potassium cyanide in the living cells, but in the scalded cells cadmium uptake was not affected by metabolic inhibitors. These results suggested that the intracellular accumulation of cadmium by the cadmium-tolerant Hansenula anomala B-7 cells was apparently dependent of biological activity, and also gave evidence of the existance of energy-dependent system.

  • PDF

Isolation of Pseudomonas putida BM01 Accumulating High Amount of $PHA_{MCL}$

  • Song, Jae-Jun;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.126-133
    • /
    • 1994
  • A Pseudomonas putida strain able to accumulate high amount of polyesters of medium-chain-length 3-hydroxyalkanoic acids ($PHA_{MCL)$) was isolated from soil in a landfill site using an enrichment technique. Culture condition of the isolated strain for polyester production in a one-step culture was optimized in a mineral-salts medium against pH and concentrations of ammonium sulfate, carbon source(e.g., octanoate), and phosphate. The optimal values for maximal cell growth and PHA accumulation were: pH; 7$\sim$8, $(NH_4)_2SO_4$; 8 mM, octanoate; 40 mM. The optimum temperature was in the range of $20\sim30^{\circ}C$, which was rather broader than in other bacteria. Cell growth was strongly inhibited by the phosphate limitation to less than 1 mM. An increase of phosphate concentration above 1 mM showed little effect on cell growth and polyester accumulation. When the strain was grown on octanoate under this optimized condition it produced 3.4 g dry biomass per liter and yielded 1.7 g PHA per liter amounting to 53 wt% of dry cells. The monomer units composing the polyester synthesized from octanoate were 3-hydroxyoctanoate (3HO), 3-hydroxycaproate (3HC), and 3-hydroxybutyrate (3HB) (85:13:2, mole ratio). Other low linear $C_3\simC_{10}$ monocarboxylic acids were also tested for polyester production.

  • PDF

Enhanced Production of Succinic Acid by Metabolically Engineered Escherichia coli with Amplified Activities of Malic Enzyme and Fumarase

  • Hong, Soon-Ho;Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.252-255
    • /
    • 2004
  • A pfl ldhA double mutant Escherichia coli strain NZN 111 was used to produce succinic acid by overexpressing the E. coli malic enzyme gene (sfcA). This strain, however, produced a large amount of malic acid as well as succinic acid. After the analyses of the metabolic pathways, the fumB gene encoding the anaerobic fumarase of E. coli was co-amplified to solve the problem of malic acid accumulation. A plasmid, pTrcMLFu, was constructed, which contains an artificial operon (sfcA-fumB) under the control of the inducible trc promoter. From the batch culture of recombinant E. coli NZN 111 harboring pTrcMLFu, 7 g/L of succinic acid was produced from 20 g/L of glucose, with no accumulation of malic acid. From the metabolic flux analysis the strain was found under reducing power limiting conditions by severe reorientation of metabolic fluxes.

Movement of Zucchini yellow mosaic vims Involved in Symptom Severity on Zucchini Squash

  • Park, Seung-Kook;Yoon, Ju-Yeon;Park, Sun-Hee;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.19 no.4
    • /
    • pp.217-220
    • /
    • 2003
  • Zucchini squash (Cucurbita pepo cv. Black Beauty) plants infected with A strain of Zucchini yellow mosaic virus (ZYMV-A) isolated from a hollyhock plant showed systemically severe mosaic symptom, similar to previously established Cu strain of ZYMV. However, initial symptom of squash infected by ZYMV-A strain was generally more severe than those infected by ZYMV-Cu. Using leaf-detachment assay, examination of kinetics of accumulation of the coat protein (CP) in systemic loaves of squash plants showed that CPs of ZYMV-A appeared earlier than those of ZYMV-Cu. However, both ZYMV-A and ZYMV-Cu showed similar kinetics of CP accumulation 7 days post-inoculation. These results indicate that different rates and initial severity of systemic symptom development were due to differences in the rate of movement rather than vims replication.

Alcoholic Hepatotoxicity Suppression in Alcohol Fed Rats by Glutathione-enriched Yeast FF-8 Strain

  • Cha, Jae-Young;Kim, Hyeong-Soo;Kang, Sun-Chul;Cho, Young-Su
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1411-1416
    • /
    • 2009
  • The suppressive effects of glutathione-enriched Saccharomyces cerevisiae FF-8 strain (FF-8 GY) on alcoholinduced hepatotoxicity have been studied. FF-8 GY (256 mg/L) from the fermentation at a large scale bioreactor was used. Either of 5% FF-8 GY or 5% commercial glutathione-enriched yeast extract (GYE) with or without 30% alcohol was tested with rats for 4 weeks. FF-8 GY and GYE were found to reduce those alcohol-elevated serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) activities. Blood alcohol and acetaldehyde were also decreased by FF-8 GY and GYE. Interestingly, FF-8 GY drastically increased both hepatic alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities in comparison to GYE group, thus FF-8 GY would be more effective in blood alcohol and acetaldehyde reduction. Attenuated lipid droplet accumulation in hepatocytes was observed in both FF-8 GY and GYE when alcohol stimulated the accumulation. Therefore, FF-8 GY may be useful to protect liver from alcohol-induced hepatotoxicity.

Studies on the Extracellular Protein Production by Bacillus sp. (Bacillus 속(屬)균에 의한 균체외(菌體外) 단백질의 생산에 대하여)

  • Cha, Hyeon-Jeong;Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.28 no.3
    • /
    • pp.209-217
    • /
    • 1985
  • Seventeen extracellular protein producing bacteria were isolated from soil samples, among which T219 strain having a strong capability of producing the protein was selected and identified for investigation of biological characteristics. The factors which affect the protein production were investigated and the results are summarized as follows. T219 strain which produces the most extracellular protein was identified as Bacillus sp. Optimum temperature and pH for production of the extracellular protein by T219 strain were $25^{\circ}C$ and 7.5 respectively. Almost no activities of protease and amylase were observed in the protein produced by the protein producing bacteria. In the medium containing yeast extract, the cell growth was moderately high, but almost no accumulation of protein was observed. However, polypeptone had significant effects on both the cell growth and the protein accumulation. The addition of glycine and L-isoleucine to the medium containing polypeptone, yeast extract and meat extract had a great effect on the protein production; 4mg/ml of protein accumulation was observed.

  • PDF