• Title/Summary/Keyword: strain accumulation

Search Result 279, Processing Time 0.027 seconds

Molecular Characterization of a dsRNA Mycovirus, Fusarium graminearum Virus-DK21, which Is Phylogenetically Related to Hypoviruses but Has a Genome Organization and Gene Expression Strategy Resembling Those of Plant Potex-like Viruses

  • Kwon, Sun-Jung;Lim, Won-Seok;Park, Sang-Ho;Park, Mi-Ri;Kim, Kook-Hyung
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.304-315
    • /
    • 2007
  • Fusarium graminearum causes a serious scab disease of small grains in Korea. The nucleotide sequence of the genomic RNA of a double-stranded RNA (dsRNA) virus, Fusarium graminearum virus-DK21 (FgV-DK21), from F. graminearum strain DK21, which is associated with hypovirulence in F. graminearum, was determined and compared to the genome sequences of other mycoviruses, including Cryponectria hypoviruses. The FgV-DK21 dsRNA consists of 6,624 nucleotides, excluding the 3'-terminal poly(A) tail. The viral genome has 53- and 46-nucleotide 5' and 3' untranslated regions (UTRs), respectively, and five putative open reading frames. A phylogenetic analysis of the deduced amino acid sequence of ORF1, which encodes a putative RNA-dependent RNA polymerase, and those of other mycoviruses revealed that this organism forms a distinct virus clade with other hypoviruses, and is more distantly related to other mycoviruses (3.8 to 24.0% identity). However, pairwise sequence comparisons of the nucleotide and deduced amino acid sequences of ORFs 2 through 5 revealed no close relationships to other protein sequences currently available in GenBank. Analyses of RNA accumulation by Northern blot and primer extension indicated that these putative gene products are expressed from at least two different subgenomic RNAs (sgRNAs), in contrast to the cases in other hypoviruses. This study suggests the existence of a new, as yet unassigned, genus of mycoviruses that exhibits a potex-like genome organization and sgRNA accumulation.

Enhancement of L-lysine Productivity by Strain Improvement and Optimization of Fermentation Conditions in Corynebacterium glutamicum (Corynebacterium glutamicum 균주 개량 및 발효 공정 최적화에 의한 L-lysine 생산성 증진)

  • Seo, Jin-Mi;Hyun, Hyung-Hwan
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.79-84
    • /
    • 2006
  • In order to minimize the reduction of lysine productivity by accumulation of lysine and byproducts in the end of fed-batch fermentations, a salt-tolerant mutant C14-49-3-15-7-3-20, which could grow at high concentrations of NaCl was isolated through mutagenesis from the Corynebacterium glutamicum mother strain I. In the evaluation of L-lysine productivity by fed-batch fermentations using a 5 L jar fermenter, the salt-tolerant mutant strain C14-49-3-15-7-3-20 produced 130.6 g/L of L-lysine with a 48.6% of yield. The mother strain I produced L-lysine concentration only 104.9 g/L with a yield 41.8%, implying the improvement of L-lysine productivity by introduction of salt-tolerance character.

Alcohol Fermentation at High Temperature and the Strain-specific Characteristics Required to Endow the Thermotolerance of Sacchromyces cerevisiae KNU5377

  • Paik, Sang-Kyoo;Park, In-Su;Kim, Il-Sup;Kang, Kyung-Hee;Yu, Choon-Bal;Rhee, In-Koo;Jin, In-Gnyol
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.154-164
    • /
    • 2005
  • Saccharomyces cerevisiae KNU5377 is a thermotolerant strain, which can ferment ethanol from wasted papers and starch at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. This strain showed alcohol fermentation ability to convert wasted papers 200 g (w/v) to ethanol 8.4% (v/v) at 40$^{\circ}C$, meaning that 8.4% ethanol is acceptable enough to ferment in the industrial economy. As well, all kinds of starch that are using in the industry were converted into ethanol at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. Hyperthermic cell killing kinetics and differential scanning calorimetry (DSC) revealed that exponentially growing cells of this yeast strain KNU5377 were more thermotolerant than those of S. cerevisiae ATCC24858 used as a control. This intrinsic thermotolernace did not result from the stability of entire cellular components but possibly from that of a particular target. Heat shock induced similar results in whole cell DSC profiles of both strains and the accumulation of trehalose in the cells of both strains, but the trehalose contents in the strain KNU5377 were 2.6 fold higher than that in the control strain. On the contrary to the trehalose level, the neutral trehalase activity in the KNU5377 cells was not changed after the heat shock. This result made a conclusion that though the trehalose may stabilize cellular components, the surplus of trehalose in KNU5377 strain was not essential for stabilization of whole cellular components. A constitutively thermotolerant yeast, S. cerevisiae KNU5377, was compared with a relatively thermosensitive control, S. cerevisiae ATCC24858, by assaying the fluidity and proton ATPase on the plasma membrane. Anisotropic values (r) of both strains were slightly increased by elevating the incubation temperatures from 25$^{\circ}C$ to 37$^{\circ}C$ when they were aerobically cultured for 12 hours in the YPD media, implying the membrane fluidity was decreased. While the temperature was elevated up to 40$^{\circ}C$, the fluidity was not changed in the KNU5377 cell, but rather increased in the control. This result implies that the plasma membrane of the KNU5377 cell can be characterized into the more stabilized state than control. Besides, heat shock decreased the fluidity in the control strain, but not in the KNU5377 strain. This means also there's a stabilization of the plasma membrane in the KNU5377 cell. Furthermore, the proton ATPase assay indicated the KNU5377 cell kept a relatively more stabilized glucose metabolism at high temperature than the control cell. Therefore, the results were concluded that the stabilization of plasma membrane and growth at high temperature for the KNU5377 cell. Genome wide transcription analysis showed that the heat shock responses were very complex and combinatory in the KNU5377 cell. Induced by the heat shock, a number of genes were related with the ubiquitin mediated proteolysis, metallothionein (prevent ROS production from copper), hsp27 (88-fold induced remarkably, preventing the protein aggregation and denaturation), oxidative stress response (to remove the hydrogen peroxide), and etc.

  • PDF

Identification of Plasmid-Free Chlamydia muridarum Organisms Using a Pgp3 Detection-Based Immunofluorescence Assay

  • Chen, Chaoqun;Zhong, Guangming;Ren, Lin;Lu, Chunxue;Li, Zhongyu;Wu, Yimou
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1621-1628
    • /
    • 2015
  • Chlamydia possesses a conserved 7.5 kb plasmid that is known to play an important role in chlamydial pathogenesis, since some chlamydial organisms lacking the plasmid are attenuated. The chlamydial transformation system developed recently required the use of plasmid-free organisms. Thus, the generation and identification of plasmid-free organisms represent a key step in understanding chlamydial pathogenic mechanisms. A tricolor immunofluorescence assay for simultaneously detecting the plasmid-encoded Pgp3 and whole organisms plus DNA staining was used to screen C. muridarum organisms selected with novobiocin. PCR was used to detect the plasmid genes. Next-generation sequencing was then used to sequence the genomes of plasmid-free C. muridarum candidates and the parental C. muridarum Nigg strain. We generated five independent clones of plasmid-free C. muridarum organisms by using a combination of novobiocin treatment and screening plaque-purified clones with anti-Pgp3 antibody. The clones were confirmed to lack plasmid genes by PCR analysis. No GlgA protein or glycogen accumulation was detected in cells infected with the plasmid-free clones. More importantly, whole-genome sequencing characterization of the plasmid-free C. muridarum organism and the parental C. muridarum Nigg strain revealed no additional mutations other than loss of the plasmid in the plasmid-free C. muridarum organism. Thus, the Pgp3-based immunofluorescence assay has allowed us to identify authentic plasmid-free organisms that are useful for further investigating chlamydial pathogenic mechanisms.

Cloning and Functional Characterization of Putative Escherichia coli ABC Multidrug Efflux Transporter YddA

  • Feng, Zhenyue;Liu, Defu;Liu, Ziwen;Liang, Yimin;Wang, Yanhong;Liu, Qingpeng;Liu, Zhenhua;Zang, Zhongjing;Cui, Yudong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.982-995
    • /
    • 2020
  • A putative multidrug efflux gene, yddA, was cloned from the Escherichia coli K-12 strain. A drug-sensitive strain of E. coli missing the main multidrug efflux pump AcrB was constructed as a host and the yddA gene was knocked out in wild-type (WT) and drug-sensitive E. coliΔacrB to study the yddA function. Sensitivity to different substrates of WT E.coli, E. coliΔyddA, E. coliΔacrB and E. coliΔacrBΔyddA strains was compared with minimal inhibitory concentration (MIC) assays and fluorescence tests. MIC assay and fluorescence test results showed that YddA protein was a multidrug efflux pump that exported multiple substrates. Three inhibitors, ortho-vanadate, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and reserpine, were used in fluorescence tests. Ortho-vanadate and reserpine significantly inhibited the efflux and increased accumulation of ethidium bromide and norfloxacin, while CCCP had no significant effect on YddA-regulated efflux. The results indicated that YddA relies on energy released from ATP hydrolysis to transfer the substrates and YddA is an ABC-type multidrug exporter. Functional study of unknown ATP-binding cassette (ABC) superfamily transporters in the model organism E. coli is conducive to discovering new multidrug resistance-reversal targets and providing references for studying other ABC proteins of unknown function.

Melanin Bleaching and Melanogenesis Inhibition Effects of Pediococcus acidilactici PMC48 Isolated from Korean Perilla Leaf Kimchi

  • Kim, Sukyung;Seo, Hoonhee;Mahmud, Hafij Al;Islam, Md Imtiazul;Sultana, Omme Fatema;Lee, Youngkyoung;Kim, Minhee;Song, Ho-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1051-1059
    • /
    • 2020
  • Overproduction and accumulation of melanin in the skin will darken the skin and cause skin disorders. So far, components that can inhibit tyrosinase, a melanin synthase of melanocytes, have been developed and used as ingredients of cosmetics or pharmaceutical products. However, most of existing substances can only inhibit the biosynthesis of melanin while melanin that is already synthesized and deposited is not directly decomposed. Thus, their effects in decreasing melanin concentration in the skin are weak. To overcome the limitation of existing therapeutic agents, we started to develop a substance that could directly biodegrade melanin. We screened traditional fermented food microorganisms for their abilities to direct biodegrade melanin. As a result, we found that a kimchi-derived Pediococcus acidilactici PMC48 had a direct melanin-degrading effect. This PMC48 strain is a new strain, different from P. acidilactici strains reported so far. It not only directly degrades melanin, but also has tyrosinase-inhibiting effect. It has a direct melanin-decomposition effect. It exceeds existing melanin synthesis-inhibiting technology. It is expected to be of high value as a raw material for melanin degradation drugs and cosmetics.

AbSte7, a MAPKK Gene of Alternaria brassicicola, Is Involved in Conidiation, Salt/Oxidative Stress, and Pathogenicity

  • Xu, Houjuan;Zhang, Qianqian;Cui, Wenjuan;Zhang, Xiaofei;Liu, Weiyang;Zhang, Li;Islam, Md. Nurul;Baek, Kwang-Hyun;Wang, Yujun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1311-1319
    • /
    • 2016
  • Alternaria brassicicola (Schwein.) invades Brassicaceae and causes black spot disease, significantly lowering productivity. Mitogen-activated protein kinases (MAPKs) and their upstream kinases, including MAPK kinases (MAPKKs) and MAPKK kinases (MAPKKK), comprise one of the most important signaling pathways determining the pathogenicity of diverse plant pathogens. The AbSte7 gene in the genome of A. brassicicola was predicted to be a homolog of yeast Ste7, a MAPKK; therefore, the function was characterized by generating null mutant strains with a gene replacement method. AbSte7 replacement mutants (RMs) had a slower growth rate and altered colony morphology compared with the wild-type strain. Disruption of the AbSte7 gene resulted in defects in conidiation and melanin accumulation. AbSte7 was also involved in the resistance pathways in salt and oxidative stress, working to negatively regulate salt tolerance and positively regulate oxidative stress. Pathogenicity assays revealed that AbSte7 RMs could not infect intact cabbage leaves, but only formed very small lesions in wounded leaves, whereas typical lesions appeared on both intact and wounded leaves inoculated with the wild-type strain. As the first studied MAPKK in A. brassicicola, these data strongly suggest that the AbSte7 gene is an essential element for the growth, development, and pathogenicity of A. brassicicola.

Biological Control of Rice Bakanae by an Endophytic Bacillus oryzicola YC7007

  • Hossain, Mohammad Tofajjal;Khan, Ajmal;Chung, Eu Jin;Rashid, Md. Harun-Or;Chung, Young Ryun
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.228-241
    • /
    • 2016
  • In our previous study, we reported that a novel endophytic bacterium Bacillus oryzicola YC7007 has suppressed bacterial diseases of rice via induced systemic resistance and antibiotic production. This endophytic strain, B. oryzicola YC7007 was used as a biological control agent against bakanae disease of rice caused by Fusarium fujikuroi, and its mechanism of interaction with the pathogen and the rice was further elucidated. Root drenching with B. oryzicola YC7007 suspension reduced the disease severity of bakanae significantly when compared with the untreated controls. The treatments of B. oryzicola YC7007 suspension ($2.0{\times}10^7cfu/ml$) to the rice rhizosphere reduced bakanae severity by 46-78% in pots and nursery box tests containing autoclaved and non-autoclaved soils. Moreover, in the detached rice leaves bioassay, the development of necrotic lesion and mycelial expansion of F. fujikuroi were inhibited significantly by spraying the culture filtrate of B. oryzicola YC7007. Drenching of ethyl acetate extracts of the culture filtrate to the rhizosphere of rice seedlings also reduced the bakanae disease severity in the plant culture dish tests. With the root drenching of B. oryzicola YC7007 suspension, the accumulation of hydrogen peroxide was observed at an early stage of rice seedlings, and a hormonal defense was elicited with and without pathogen inoculation. Our results showed that the strain B. oryzicola YC7007 had a good biocontrol activity against the bakanae disease of rice by direct inhibition, and was also capable of inducing systemic resistance against the pathogen via primed induction of the jasmonic acid pathway.

Characterization of the Biogenic Manganese Oxides Produced by Pseudomonas putida strain MnB1

  • Jiang, Shaofeng;Kim, Do-Gun;Kim, Jeong-Hyun;Ko, Seok-Oh
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.183-190
    • /
    • 2010
  • Biogenic Mn oxides are expected to have great potential in the control of water pollution due to their high catalytic activity, although information on biological Mn oxidation is not currently sufficient. In this study, the growth of a Mn oxidizing microorganism, Pseudomonas putida MnB1, was examined, with the Mn oxides formed by this strain characterized. The growth of P. putida MnB1 was not significantly influenced by Mn(II), but showed a slightly decreased growth rate in the presence of Pb(II) and EE2, indicating their insignificant adsorption onto the cell surface. Mn oxides were formed by P. putida MnB1, but the liquid growth medium and resulting biogenic solids were poorly crystalline, nano-sized particles. Biogenic Mn oxidation by P. putida MnB1 followed Michaelis-Menten kinetics, with stoichiometric amounts of Mn oxides formed, which corresponded with the initial Mn(II) concentration. However, the formation of Mn oxides was inhibited at high initial Mn(II) concentration, suggesting mass transfer obstruction of Mn(II) due to the accumulation of Mn oxides on the extracellular layer. Mn oxidation by P. putida MnB1 was very sensitive to pH and temperature, showing sharp decreases in the Mn oxidation rates outside of the optimum ranges, i.e. pH 7.43-8.22 and around 20-$26^{\circ}C$.

Differential Symbiotic Response of Phage-typed Strains of Bradyrhizobium japonicum with Soybean Cultivars

  • Appunu Chinnaswamy;Dhar Banshi
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.363-368
    • /
    • 2006
  • In this study, native Byadyrhizobium strains were isolated from the host plant, Glycine max, harvested from fields in Madhya Pradesh, India, and were typed by Iytic rhizobiophages. Eight indigenous (Soy2, ASR011, ASR031, ASR032, MSR091, ISR050, ISR076 and ISR078) and two exotic strains (USDA123 and CB1809), all of which evidenced a distinct reaction with six phages, were employed in this study. The symbiotic interaction of these strains was studied initially using soybean cultivar JS335 in a sand culture in a controlled environment, and the efficiency was assessed based on the nodule number, nodule dry weight, plant dry weight, nitrogenase activity, and total accumulation of N per plant. Symbiotic effectiveness was found to be highest with the native phage-sensitive isolate ASR011, whereas it was at a minimum with the phage-resistant isolates, ISR050 and ISR078. Additionally, the effectiveness of these strains was evaluated using six soybean cultivars belonging to different maturity groups; namely, Brags, Lee, Pusa20, PK416, JS33S and NRC37. Analysis of variance data evidenced significant differences due to both symbionts, for the majority of the tested parameters. The CB1809, USDA123, and ASR011 strains evidenced relatively superior symbiotic effectiveness with soybean cultivars Brags, Lee and JS335. Strain ISR078 evidenced no significant responses with any of the cultivars. The ASR031 strain performed moderately well with all tested cultivars. The symbiotic response of all the strains was quite poor with cultivar PK416. Our studies showed that a significant relationship existed between the phage sensitivity and symbiotic efficiency of the bacterial strains with the host-cultivars.