• Title/Summary/Keyword: stored-product insects

Search Result 7, Processing Time 0.02 seconds

Cyanogenic glycosides : Alternative insecticides?

  • Park, Dong-Sik;Coats, Joel R.
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.2
    • /
    • pp.51-57
    • /
    • 2002
  • Cyanogenic glycosides are secondary plant metabolites that are known as plant defense chemicals. They are found in cassava, bamboo, flax, and other plants. In this paper, the role of cyanogenic glycosides, their characteristics, and their interactions with insects are discussed. Previous and current research in our laboratory found that several natural and synthetic cyanohydrins were effective against stored-product insects as fumigants. Due to their insecticidal activity to insects, cyanohydrins can be used as an alternative fumigant and also as soil fumigants. Risk assessment, however, should be done to account for possible environmental problems, non-target wildlife effects, and human health effects.

Insecticidal Activities of Various Vegetable Extracts against Five Agricultural Insect Pests and Four Stored-Product Insect Pests (다양한 채소 추출물의 농업해충 및 저장물해충에 대한 살충활성)

  • Lee, Sang-Gil;Park, Ji-Doo;Song, Cheol;Cho, Kwang-Yun;Lee, Sang-Guei;Kim, Moo-Key;Lee, Hoi-Seon
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.2
    • /
    • pp.18-25
    • /
    • 2001
  • Ethanol extracts from 46 vegetables were tested their insecticidal activities toward five agricultural insect pests and four stored-product insect pests. The efficacy varied with both agricultural insects/stored-product insects and vegetable species used. Potent insecticidal activities, at the concentration of 5,000 ppm, were produced from extracts of Nelumbo nucifera and Ulva lactuca against Myzus persicae, Zea ways and Z. mays (leaf) against Nilaparvata lugens, Citrullus vulgaris (seed) and U. lactuca against Plutella xylostella, N. nucifera, Z. mays, and Z. mays (leaf) against Spodoptera litura, and C. vulgaris (seed), Daucus carota, Helianthus annuus (leaf), H. annuus (flower), Lactuca sativa, and Zingiber officinale against Tetranychus urticae. Potent insecticidal activities at the concentration of 2,500 ppm were exhibited from the extracts of N. nucifera and U. lactuca against M. persicae, Z. mays against N. lugens, C. vulgaris (seed) and U. lactuca against xylostella, N. nucifera and Z. mays against S. litura, and C. vulgaris (seed), H. annuus (flower), and L. santiva against T. urticae. Against four stored-product insect pests at 50 ppm, extracts of C. vulgaris (seed) and Cucurbita moschatla (seed) against Sitophilus oryzae and C. vulgaris (seed), H. annuus (seed), and Z. officinale against Plodia interpunctellfa revealed potent insecticidal activities over 80% mortality. In tests with Callosobruchus chininsis and Lasioderma serricorne, extracts of all vegetables tested exhibited meager and no activity.

  • PDF

Research trends and views for insect-proof food packaging technologies (해충유입 방지를 위한 방충포장기법의 연구 동향 및 전망)

  • Chang, Yoonjee;Na, Ja-hyun;Han, Jaejoon
    • Food Science and Industry
    • /
    • v.50 no.2
    • /
    • pp.2-11
    • /
    • 2017
  • Packaging is the last defensive barrier that protects food products from insect infestation during storage. However, though packaging films are hermetically sealed, insects can still be attracted by strong olfactory cues and penetrate through packaging materials, resulting in contamination. Insect contamination may cause consumers to be repulsed by contaminated food products. Especially, it is well known that stored-product insects cause critical problems in the cereal industry by inducing quantitative and qualitative damages to the grain products. The contaminations are caused by insects' metabolic byproducts and body parts, consequentially caused customer repulsion. Therefore, it is necessary to repel and control insects. However, management systems for storage insects in food industry have been inadequate for many years. Synthetic pesticides has been widely used, but pesticides may accumulate in foods, causing acute and chronic symptoms in consumers. For this reason, there is a growing need for the development of natural insecticides that can replace synthetic pesticides. Thus, various reports about anti-insect packaging materials and strategies to repel insects were introduced in this study. Furthermore, we suggested new strategies to develop an insect-repelling active packaging materials which could be applied in the food packaging industry.

Development of a Fennel (Foeniculum vulgare) Oil-based Anti-insect Sachet to Prevent the Indian Meal Moth (Plodia interpunctella) (화랑곡나방 유충 방제를 위한 회향오일 기반 방충향낭 개발)

  • Lee, Soo-Hyun;Jo, Heon-Joo;Lee, Yun-Jeong;Han, Jaejoon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.2
    • /
    • pp.81-85
    • /
    • 2013
  • The stored-product insects have been a serious problem during the entire process of distribution on the food industry. Especially, the Indian meal moth (Plodia interpunctella) is one of stored-product insects which causes harm through penetrating into the food packaging. The objective of this study was to develop the anti-insect packaging material with fennel (Foeniculum vulgare) oil (FO). The FO has been selected for insecticidal substance against P. interpunctella, which was tested by fumigant toxicity assay. An anti-insect sachet was prepared by FO and filterpaper placed in a small paper bag. Repellent test was performed to evaluate the repellent activity of anti-insect sachet. In addition, the controlled release of FO from the anti-insect sachet was determined at $28^{\circ}C$ by gas chromatography (GC). It was demonstrated that FO was an effective substance against P. interpunctella. The mortality of FO was 56% at 800 mg/0.5 L in 120 h. In repellent test, the FO sachet showed effective repellency against P. interpunctella. The developed anti-insect sachet could be a promising source for insect repellent materials in food packaging.

  • PDF