• Title/Summary/Keyword: storage reliability

Search Result 573, Processing Time 0.032 seconds

A decision-centric impact assessment of operational performance of the Yongdam Dam, South Korea (용담댐 기존운영에 대한 의사결정중심 기후변화 영향 평가)

  • Kim, Daeha;Kim, Eunhee;Lee, Seung Cheol;Kim, Eunji;Shin, June
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.205-215
    • /
    • 2022
  • Amidst the global climate crisis, dam operation policies formulated under the stationary climate assumption could lead to unsatisfactory water management. In this work, we assessed status-quo performance of the Yongdam Dam in Korea under various climatic stresses in flood risk reduction and water supply reliability for 2021-2040. To this end, we employed a decision-centric framework equipped with a stochastic weather generator, a conceptual streamflow model, and a machine-learning reservoir operation rule. By imposing 294 climate perturbations to dam release simulations, we found that the current operation rule of the Yongdam dam could redundantly secure water storage, while inefficiently enhancing the supply reliability. On the other hand, flood risks were likely to increase substantially due to rising mean and variability of daily precipitation. Here, we argue that the current operation rules of the Yongdam Dam seem to be overly focused on securing water storage, and thus need to be adjusted to efficiently improve supply reliability and reduce flood risks in downstream areas.

Development of a Storage-Reliability Estimation Method Using Quantal Response Data for One-Shot Systems with Low Reliability-Decreasing Rates (미소한 신뢰도 감소율을 가지는 원샷 시스템의 가부반응 데이터를 이용한 저장 신뢰도 추정방법 개발)

  • Jang, Hyun-Jeung;Son, Young-Kap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1291-1298
    • /
    • 2011
  • This paper proposes a new reliability estimation method for one-shot systems using quantal response data, which is based on a parametric estimation method. The proposed method considers the time-variant failure ratio of the quantal response data and it can overcome the problems in parametric estimation methods. Seven reliability estimation methods in the literature were compared with the proposed method in terms of the accuracy of reliability estimation in order to verify the proposed method. To compare the accuracy of reliability estimation, the SSEs (Sum of Squared Error) of the reliability estimation results for the different estimation methods were evaluated according to the various numbers of samples tested. The proposed method provided more accurate reliability estimation results than any of the other methods from the results of the accuracy comparison.

Storage Lifetime Prediction of Zr-Ni Delay System in Fuze K510 for High Explosive Shell (충격신관 K510용 Zr-Ni계 지연관의 저장수명 예측)

  • Park, Byung-Chan;Chang, Il-Ho;Back, Seung-Jun;Son, Young-Kap;Jung, Eun-Jin;Hwang, Taek-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.719-726
    • /
    • 2009
  • A delay system in fuze for high explosive shell is an important safety device, but failure in the delay system usually causes failure of the shell. Root-cause analysis of failure in the delay system is required since failure in over 10-years stored delay system recently occurs. In this paper, failure in the delay system was reproduced experimentally to examine aged characteristics of the delay system, and the failed delay system shows the same characteristics as ones of failed delay systems in field. Based on the reproduced experiments, accelerated life testings and the data analysis of failure times of delay systems were performed to predict the storage lifetime.

The Effect of Regenerative Energy Storage System on Stabilization of Electro-Pneumatic Braking Blending (회생에너지 저장시스템이 제동 브랜딩 안정화에 미치는 영향)

  • Kim, Kyu-Joong;Lee, Keun-Oh
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.5
    • /
    • pp.15-21
    • /
    • 2010
  • Regenerative Energy Storage System(ESS) is a system that saves regenerative energy which generated instantly in the regenerative braking of Electric Multiple Unit(EMU) and disappear, and reuse the stored energy when EMU is in powering. Such system related to a research field of renewable energy which emerged concerning climate change and high oil prices. In the case of existing domestic rolling stock, about 25% to 30% of generated regenerative energy is restored to power source and is regarded as direct factor of raising catenary voltage. Such rapid change of catenary voltage is a cause of the failure of EMU's electronic equipment and lowering its reliability and is also a cause of train's fault occurred by tripping circuit breaker. In this paper, we intend to investigate the effect on blending characteristics of electric-braking and pneumatic-braking whether the regenerative energy storage system is used or not in urban transit DC 1,500V feeding system, while trains run. And we also intend to investigate its effect on stabilization of the blending, fluctuation of catenary voltage and various electric equipments.

The Evaluation of Fire Reliability for the High Pressure Hydrogen Storage System of Fuel Cell Vehicle (I) (연료전지자동차의 고압수소저장시스템 국부화재 신뢰성 평가 (I))

  • Kim, Sang-Hyun;Choi, Young-Min;Hang, Ki-Ho;Shim, Ji-Hyun;Hang, In-Cheol;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.520-526
    • /
    • 2011
  • In recent years, it is very important that hydrogen storage system is safe for user in any circumstances in case of crash and fire. Because the hydrogen vehicle usually carry high pressurized cylinders, it is necessary to do safety design for fire. The Global Technical Regulation (GTR) has been enacted for localized and engulfing fire test. High pressure hydrogen storage system of fuel cell electrical vehicles are equipped with Thermal Pressure Relief Device (TPRD) installed in pressured tank cylinder to prevent the explosion of the tank during a fire. TPRDs are safety devices that perceive a fire and release gas in the pressure tank cylinder before it is exploded. In this paper, we observed the localized and engulfing behavior of tank safety, regarding the difference of size and types of the tanks in accordance with GTR.

An Empirical Study on the Influence Factors of the Mobile Cloud Storage Service Satisfaction (모바일 클라우드 스토리지 서비스 이용만족에 영향을 미치는 요인에 관한 실증연구)

  • Choi, Kwangdoo;Cho, Insu;Park, Heejun;Lee, Kiwon;Kang, Junmo
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.3
    • /
    • pp.381-394
    • /
    • 2013
  • Purpose: Nowadays, Mobile Cloud Storage services are used widely. For sustainable use of this service, we need to determine what factors affect satisfaction. Therefore, the purpose of this study is to identify the factors that influence satisfaction. Methods: To analyze factors that influence satisfaction, this study sets the factors into three dimensions such as service quality, perceived risk, and individual characteristics and analyze the causal relationship between influence factors and satisfaction through Structural Equation Model. Results: The results of this study are as follows; among service quality, user interface and reliability influenced satisfaction, but adaptability did not have any influence. Perceived risk of illegal access had a negative influence on satisfaction, while perceived risk of privacy leakage did not have significant influence on satisfaction in perceived risk. At last, self-efficacy had a significant influence on satisfaction. Conclusion: We identified the influence factors that influence satisfaction. Our findings will be necessary for Mobile Cloud Storage service providers to strengthen their service.

Stability Control of Energy Storage Voltage Source Inverters in Isolated Power Systems

  • Hu, Jian;Fu, Lijun
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1844-1854
    • /
    • 2018
  • Isolated power systems (IPS) are often characterized by a weak grid due to small power grids. The grid side voltage is no longer equivalent to an ideal voltage source of an infinitely big power grid. The conversion control of new energy sources, parameter perturbations as well as the load itself can easily cause the system voltage to oscillate or to become unstable. To solve this problem, increasing the energy-storage power sources is usually used to improve the reliability of a system. In order to provide support for the voltage, the energy-storage power source inverter needs an method to control the voltage source. Therefore, this paper has proposed the active damping control of a voltage source inverter (VSI) based on virtual compensation. By simplifying the VSI double closed-loop control, two feedback compensation channels have been constructed to reduce the VSI output impedance without changing the characteristics of the voltage gain of a system. This improvement allows systems to operate stably in a larger range. A frequency-domain analysis, and simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method.

Study on Filling Capacity of Self-Consolidating Concrete for Modular LNG Storage Tank (모듈형 LNG 저장탱크용 자기 충전 콘크리트의 충전 성능평가 실용화 연구)

  • Lee, Dong Kyu;Lee, Keon Woo;Choi, Myoung Sung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.50-57
    • /
    • 2018
  • The purpose of this study is to evaluate the practical application of the self consolidating concrete for the steel concrete pannel (SCP) in module LNG storage tank proposed in the previous research. We evaluated the physical properties and filling performance of developed concrete for the SCP module. First, a slump flow test was conducted to evaluate the performance of the proposed guidelines for the filling test. As a result, all of the concrete used showed satisfactory performance. Based on the results of the previous study, it was found that the reliability of the required time measured by the $T_{500}$ test and the rheometer results measured before and after pumping was 0.94 which means the separation and blocking should not occur. The L-box test and the U-box test were conducted before and after pumping. All of the guidelines suggested showed satisfactory performance. SCP module for LNG storage tanks was fabricated on actual size scale to evaluate the practical application at the final site. As a result, it was confirmed that satisfactory filling performance was obtained in all the specimens.

Performance Analysis on a Heat Pump System using Waste Heat (폐열이용 열펌프시스템의 성능에 관한 연구)

  • Park, Youn Cheol;Song, Lei;Ko, Gwang Soo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.53-60
    • /
    • 2018
  • This study was conducted for analysis of a heat pump system using waste heat in an enclosed space such as a green house. The model was developed with mathematical equations in literature and Engineering Equation Solver (EES) was used to get the solution of the developed equations. The simulation results have 5% of reliability comparing the results with actual test data of heat pump system's dynamic operation. The operating performance of the system was calculated with variation of working fluid temperature in the thermal storage tank such as $25^{\circ}C$, $35^{\circ}C$, $45^{\circ}C$ and $55^{\circ}C$. As a result, the system's the highest total heating capacity shows 280 kWh and the storage tank's operating time decreased as the starting storage tank's temperature was high.

Prediction of sediment flow to Pleikrong reservoir due to the impact of climate change

  • Xuan Khanh Do;ThuNgaLe;ThuHienNguyen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.38-38
    • /
    • 2023
  • Pleikrong reservoir with a concrete gravity dam that impound more than 1 billion cubic meter storage volume is one of the largest reservoir in Central Highland of Vietnam. Sedimentation is a major problem in this area and it becomes more severe due to the effect of climate change. Over time, it gradually reduces the reservoir storage capacity affecting to the reliability of water and power supply. This study aims to integrate the soil and water assessment tool (SWAT) model with 14 bias-corrected GCM/RCM models under two emissions scenarios, representative concentration pathway (RCP) 4.5 and 8.5 to estimate sediment inflow to Pleikrong reservoir in the long term period. The result indicated that the simulated total amount of sediment deposited in the reservoir from 2010 to 2018 was approximately 39 mil m3 which is a 17% underestimate compared with the observed value of 47 mil m3. The results also show the reduction in reservoir storage capacity due to sedimentation ranges from 25% to 62% by 2050, depending on the different climate change models. The reservoir reduced storage volume's rate in considering the impact of climate change is much faster than in the case of no climate change. The outcomes of this study will be helpful for a sustainable and climate-resilient plan of sediment management for the Pleikrongreservoir.

  • PDF