• Title/Summary/Keyword: storage properties

Search Result 2,811, Processing Time 0.026 seconds

Properties of Chestnut Starches and Steamed Chestnuts with Different Pretreatment and Storage Conditions

  • Kim, Shin-Hye;Lee, Kyung-Sook;Suh, Dong-Soon;Lee, Young-Chun;Kim, Kwang-Ok
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.534-539
    • /
    • 2008
  • This study investigated the effects of pretreatment and storage conditions on the properties of stored chestnuts. Effects on chestnuts of refrigerated storage (RNT) and frozen storage (FNT) with no pretreatment, frozen storage after oxalic acid treatment without blanching (FON) and with blanching (FOB) were examined. Water binding capacity, swelling power, solubility, and viscosity of the starch produced from RNT, FNT, and FON were similar to those of the starch produced from control (CON). FOB showed significant differences in these properties from CON. Textural properties of starch gels prepared from stored chestnuts except FOB also were very similar to those of CON starch gels. The sensory characteristics of steamed FON and FNT were similar to those of steamed CON except in brown color and hardness. Steamed FNT tended to have higher brown color and lower hardness than steamed FON. Steamed RNT showed significant differences in all the sensory properties except in hardness and cooked chestnut flavor. Steamed FOB was significantly higher than steamed CON in water release and off-flavor. Among the storage conditions examined, frozen storage with oxalic acid treatment is recommended for the long-term storage of chestnuts.

Effects of Storage Time on Molecular Weights and Properties of Melamine-Urea-Formaldehyde Resins

  • JEONG, Bora;PARK, Byung-Dae;CAUSIN, Valerio
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.291-302
    • /
    • 2020
  • As the properties of the melamine-urea-formaldehyde (MUF) resins were changing during their storage time, this study investigated the impacts of the synthesis method and melamine content of the MUF resins on the pH, apparent viscosity, molecular weights, and crystallinity to estimate these properties over storage times of up to 30 days. Melaminesat three addition levels (5, 10, and 20 wt% based on the resin solids) were simultaneously reacted with urea and formaldehyde (MUF-A resins), while those at the same addition levels were first reacted with formaldehyde and then with urea(MUF-B resins). The pH values of the MUF-A and MUF-B resins decreased linearly as the storage time increased; the apparent viscosity increased linearly for the low melamine contents (5% and 10%) but increased exponentially for 20%. As anticipated, the molecular weights (Mw and Mn) increased linearly with the storage time, with a steeper increase in the Mw of the MUF-B resins compared with that of the MUF-A resins. The crystallinity of the two resin types decreased with storage time at higher melamine content. The relationships between these properties and the storage time made it possible to estimate the property changes in these resins synthesized by the different synthesis methods and melamine contents; this could help predict the properties of such resins in the industry during their storage.

Effect of Storage Temperature on Dynamic Rheological Properties of Hot Pepper-Soybean Pastes Mixed with Guar Gum and Xanthan Gum

  • Choi, Su-Jin;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.496-499
    • /
    • 2007
  • Dynamic rheological properties of hot pepper-soybean paste (HPSP) samples mixed with guar gum and xanthan gum were evaluated at different storage temperatures (5, 15, and $25^{\circ}C$) by using a dynamic rheometer. Magnitudes of storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) in the HPSP-gum mixtures increased with an increase in storage temperature from 5 to $25^{\circ}C$. After 3-month storage at 5 and $15^{\circ}C$ there were no significant changes in dynamic rheological properties. The increase in dynamic moduli (G', G", and ${\eta}^*$) with storage temperature is less pronounced at HPSP-xanthan gum mixtures in comparison to HPSP-guar gum mixtures. The slopes of G' (0.16-0.18) of HPSP-guar gum mixtures at 3-month storage were much higher than that (0.10) at 0-month storage, indicating that the elastic properties of the HPSP-guar gum mixtures can be decreased after 3-month storage. However, there were not much differences between the slopes of G' in HPSP-xathan gum mixtures. Xanthan gum was observed to be better structure stabilizer for HPSP during storage.

Force-Deformation Characteristics of the Fruit Flesh (과실(果實)의 힘-변형(變形) 특성(特性))

  • Kim, M.S.;Park, J.M.;Choi, D.S.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.2
    • /
    • pp.156-170
    • /
    • 1992
  • The force-deformation relationship gives the basic physical properties of the fruits such as the bioyield point, the rupture point, and the deformations at the bioyield point and the rupture point. These informations are very important to study the stress-strain relationships of the fruits. This study was conducted to analyze those physical properties according to the sampling position of the fruits, and to determine the bioyield point, the rupture point, and the deformations at the bioyield point and the rupture point of the fruits for two different storage conditions(low temperature and normal temperature) and the storage period, and to investigate the effect of loading rate on those physical properties, the hysteresis on the loading-unloading condition and the degree of elasticity of the fruits. The results of the study were as follows : 1. The physical properties(BS, US, BD, and RD) of the test specimen selected from the different sampling positions were quite different. The values of the physical properties were shown smallest ones at the cheek of the fruits, and the statistical test results of the physical properties between the cheek from the other two positions of the fruits showed that there were significant difference at the 1 % level between them. 2. The effect of loading rate on the physical properties of the fruits was relatively large, all the considered physical propertis of the fruits increased with the loading rate, but the hysteresis loss decreased with it. 3. The physical properties of the fruits according to the storage conditions and period showed different, and the bioyield deformation and the rupture deformation of the fruits increased with the storage period, but the bioyield strength and the ultimate strength of the fruits decreased with it. The effect of the storage conditions on the those physical properties showed that the normal temperature storage condition was a little higher than the low temperature storage condition. 4. As a whole, it was shown that the bioyield strength and the ultimate strength of the pear decreased a little faster than those of the apple, and the bioyield deformation and rupture deformation of the pear increased a little faster than those of apple at the two storage conditions.

  • PDF

Change in Germination and Physiological Properties of Hippophae rhamnoides Seeds by Different Storage Period (갈매보리수나무 종자의 저장기간에 따른 발아 및 생리적 특성)

  • Choi, Chung Ho;Yang, Byeong Hoon
    • Korean Journal of Plant Resources
    • /
    • v.28 no.4
    • /
    • pp.533-540
    • /
    • 2015
  • Germination properties, leachate electrical conductivity (EC), and inorganic compound leaching were analyzed to ascertain the storage ability and change of physiological characteristics during storage of Hippophae rhamnoides seeds. Seeds were placed in an incubator at 25℃ and sown in different soil media (sand, vermiculite and horticultural substrate) after being stored for 6, 18 and 30 months at 2℃. All germination properties decreased in accordance to an increase of the seed storage period. Compared with the seed storage for 18 months, germination percentage (GP), germination performance index (GPI), and germination value (GV) of seeds stored for 30 months decreased by more than 50%. When the seeds were sown in different soil media in a greenhouse, those germination properties were similar to the seeds germinated in an incubator, and mean germination time, GPI and GV had a significant difference except GP among soil media. EC and inorganic ion concentration had a strong positive correlation with the seed storage period, but the ratios of inorganic ions from stored seeds revealed that K+/Mg2+ and Na+/Mg2+ were inversely correlated with the storage period.

Physicochemical Properties of Freeze Dried Ginseng from the Fresh Ginseng Stored at Low Temperature (저온저장 후 냉동건조한 인삼의 이화학적 특성)

  • 장진규;심기환
    • Journal of Ginseng Research
    • /
    • v.18 no.1
    • /
    • pp.60-65
    • /
    • 1994
  • Fresh ginseng of same grade was stored under the 4$\pm$1$^{\circ}C$ and 87~92% RH for 10 weeks. During the storage, an aliquot amount of the ginseng was drawn, freeze dried and chemical constituents and physicochemical parameters were measured. After 10 weeks of storage drying rate and shrinkage of ginseng were 1520% and 9.04%, respectively, mold growth was seen at week 5 and observed for 51.2% of the ginseng week 10. Amylase activity level was elevated at the early stage of storage and decreased to 5% of initial value at week 5. At week 5, the elevated amylase activity was inconcomitant with the appearance of the mold growth. Crude protein contents were increased and decreased, respectively 5 week post storage. No significant changes in crude fat, crude fiber, ash, total sugar, n-butanol extract and ginsenoside were observed. The content of water-extractable substance showed maximum at week 7 to 8. The value of pH was slightly elevated and reducing sugar was increased during the storage. Key words Ginseng storage, physicochemical properties, drying rate, shrinkage, amylase activity.

  • PDF

Mechanical Properties and Ultrasonic Parameters of the Apple Flesh while in Storage (저장기간에 따른 사과 과육의 기계적 특성 및 초음파 파라미터)

  • 김기복;김만수;정현모;이상대
    • Journal of Biosystems Engineering
    • /
    • v.28 no.3
    • /
    • pp.239-244
    • /
    • 2003
  • The potential use of ultrasonic technique for firmness measurement of apples was evaluated. Mechanical properties(bioyield deformation, bioyield strength, rupture deformation, ultimate strength, and elastic modulus) and ultrasonic parameters (ultrasonic velocity, attenuation coefficient and the first peak frequency) of the apple flesh during the storage time were measured and analyzed. Ultrasonic parameters were determined from the measurement of ultrasonic wave transmission through the apple flesh specimen. Mechanical properties were obtained by universal testing machine. The bioyield strength, rupture strength, elastic modulus, ultrasonic velocity, and the first peak frequency of the apple flesh decreased with the storage time. The bioyield deformation, rupture deformation, and ultrasonic attenuation coefficient increased with the storage time. The correlation analysis between ultrasonic parameters and mechanical properties and the storage time was performed. The high correlations were found between the storage time and the ultrasonic parameters, and these relationships seem to be useful for determining the firmness of the apple flesh.

Physicochemical Properties of Korean Ginseng (Panax ginseng, C.A. Meyer) Root Polysaccharides. -Change of physicochemical properties of the starch during storage and heat treatment- (인삼다당류의 이화학적 특성에 관한 연구 -인삼저장가공중 전분의 이화학적 특성변화-)

  • 조재호;오성기
    • Journal of Ginseng Research
    • /
    • v.9 no.2
    • /
    • pp.270-284
    • /
    • 1985
  • In order to investigate the change of physicochemical properties of ginseng root starch during storage and heat treatment, the roots were stored for 15 days at 5 $^{\circ}C$, 15 $^{\circ}C$, 3$0^{\circ}C$ and 45$^{\circ}C$, and heated for 15 hours at 6$0^{\circ}C$, 7$0^{\circ}C$, 8$0^{\circ}C$, 9$0^{\circ}C$, respectively. The starch content was decreased from about 40% to 23-26% and sucrose content was increased from 4% to 12-16% during storage for 15 days at 5-45$^{\circ}C$. Maltose, which was not detected in fresh samples, was increased up to 8.5% during storage or heat treatment. Granular size of the starch was decreased and some of the granules were broken during storage. Amylose content in the starch was decreased from 33% to 20%, and blue value and alkali number of the starch were increased slightly, and solubility and swelling power of the starch were decreased during storage. 3 The higher storage temperature and the longer storage time, the starch was more susceptible to gelatinize, and the viscosity of the starch was lowered with the susceptibility of gelatinization. The susceptibility of degradation of the starch by the amylase was increased and amylolytic activities in ginseng root were, also, increased during storage.

  • PDF

MBE growth and magnetic properties of epitaxial FeMn2O4 film on MgO(100)

  • Duong, Van Thiet;Nguyen, Thi Minh Hai;Nguyen, Anh Phuong;Dang, Duc Dung;Duong, Anh Tuan;Nguyen, Van Quang;Cho, Sunglae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.318.2-318.2
    • /
    • 2016
  • FeM2X4 spinel structures, where M is a transition metal and X is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. Both the Fe and M ions can occupy tetrahedral and octahedral sites; therefore, these types of compounds can display various physical and chemical properties [1]. On the other hand, the electronic and magnetic properties of these spinel structures could be modified via the control of cation distribution [2, 3]. Among the spinel oxides, iron manganese oxide is one of promising materials for applications. FeMn2O4 shows inverse spinel structure above 390 K and ferrimagnetic properties below the temperature [4]. In this work, we report on the structural and magnetic properties of epitaxial FeMn2O4 thin film on MgO(100) substrate. The reflection high energy electron diffraction (RHEED) and X-ray diffraction (XRD) results indicated that films were epitaxially grown on MgO(100) without the impurity phases. The valance states of Fe and Mn in the FeMn2O4 film were carried out using x-ray photoelectron spectrometer (XPS). The magnetic properties were measured by vibrating sample magnetometer (VSM), indicating that the samples are ferromagnetic at room temperature. The structural detail and origin of magnetic ordering in FeMn2O4 will be discussed.

  • PDF

Quality Characteristics of Acorn Bread added with Milk (도토리 우유식빵의 품질 특성)

  • Kim, Jeong-Mee;Joo, Jung-Im
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.3
    • /
    • pp.343-352
    • /
    • 2019
  • The aim of this study was to optimize the best recipe to make acorn bread containing milk as a functional food. The color value, textural, and sensory properties of the acorn bread added with 10~40% ratio of milk were measured to develop the best recipe. As a result, the L-value of color increased with the amount of milk added, but the a- and b-values decreased. As the textural measurement, the hardness increased with increasing milk added. Cohesiveness and springiness decreased, but the gumminess and brittleness increased with the addition of 20% milk, and decreased with further addition. The sensory evaluation revealed color, taste, and overall acceptances to have high scores at 20% addition of milk. Softness and chewiness were good at 10% addition. During the storage periods at room temperature, the L- and b-values increased with the addition of milk, whereas a-value decreased. In freezer storage, the L-value increased with milk content added, but the a- and b-values decreased during the storage periods. The textural properties increased during the storage at room temperature. The addition of milk decreased the cohesiveness and springiness, but the gumminess and brittleness increased significantly after one day storage. In freezer storage, all textural properties increased significantly during the storage periods, but the hardness decreased after two days storage. With the increasing amount of milk added increased the cohesiveness, springiness, and the gumminess except for four days, but decreased hardness and brittleness after two days storage. Therefore the addition of milk in acorn bread improved the textural properties significantly.