• Title/Summary/Keyword: storage of bacterial cells

Search Result 63, Processing Time 0.026 seconds

Freezing Seawater for the Long-term Storage of Bacterial Cells for Microscopic Enumeration

  • Hyun, Jung-Ho;Yang, Eun-Jin
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.262-265
    • /
    • 2003
  • Although enumerating bacterial cells is a fundamental step in understanding microbial ecosystems in marine environments, substantial decrease in bacterial counts with increasing sample storage time hampers the accurate estimation of bacterial biomass. We compared the variations in bacterial cell numbers caused by freezing and thawing of sample bottles or slides. Bacterial counts of seawater samples frozen only once in a sampling bottle yielded approximately 95% of the original numbers after 90 days, whereas 80% of the original count was obtained for samples prepared on slides. Only 67% and 58% of the original counts were recovered in samples repeatedly frozen and thawed in bottles or on slides, respectively. The results indicated that freezing a seawater sample in a bottle increased the consistency of the epifluorescence microscopic enumeration of bacterial cells.

Bacterial Species and Biochemical Characteristic Investigations of Nostoc flagelliforme Concentrates during its Storage

  • Yue, Lifang;Lv, Hexin;Zhen, Jing;Jiang, Shengping;Jia, Shiru;Shen, Shigang;Gao, Lu;Dai, Yujie
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.648-658
    • /
    • 2016
  • Preservation of fresh algae plays an important role in algae seed subculture and aquaculture. The determination and examination of the changes of cell viability, composition, and bacterial species during storage would help to take suitable preservation methods to prolong the preservation time of fresh algae. Nostoc flagelliforme is a kind of edible cyanobacterium with important herbal and dietary values. This article investigated the changes of bacterial species and biochemical characteristics of fresh N. flagelliforme concentrate during natural storage. It was found that the viability of cells decreased along with the storage time. Fourteen bacteria strains in the algae concentrate were identified by PCR-DGGE and were grouped into four phyla, including Cyanobacteria, Firmicutes, Proteobacteria, and Bacteroidetes. Among them, Enterococcus viikkiensis may be a concern in the preservation. Eleven volatile organic compounds were identified from N. flagelliforme cells, in which geosmin could be treated as an indicator of the freshness of N. flagelliforme. The occurrence of indole compound may be an indicator of the degradation of cells.

Development of W/O/W Multiple Emulsion Formulation Containing Burkholderia gladioli

  • KIM, HWA-JIN;CHO, YOUNG-HEE;BAE, EUN-KYUNG;SHIN, TAEK-SU;CHOI, SUNG-WON;CHOI, KEE-HYUN;PARK, JI-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • W/O/W (water-in-oil-in-water) type multiple emulsion was applied to improve the storage stability of an antagonistic microorganism, Burkholderia gladioli. Encapsulation of microorganism into a W/O/W emulsion was conducted by using a two-step emulsification method. W/O/W emulsion was prepared by the incorporation of B. gladioli into rapeseed oil and the addition of polyglycerin polyriconolate (PGPR) and castor oil polyoxyethylene (COG 25) as the primary and secondary emulsifier, respectively. Microcrystalline cellulose was used as an emulsion stabilizer. To evaluate the usefulness of W/O/W emulsion formulation as a microbial pesticide for controlling the bacterial wilt pathogen (Ralstonia solanacearum), the storage stability and antagonistic activity of emulsion formulation were tested in vitro. The storage stability test revealed that the viability of formulated cells in emulsion was higher than that of unformulated cells in culture broth. At $4^{\circ}C$, the viabilities of formulated cells and unformulated cells at the end of 20 weeks decreased to about 2 and 5 log cycles, respectively. At $37^{\circ}C$, the viability of formulated cells decreased to only 2 log cycles at the end of storage. On the other hand, the viable cells in culture broth were not detected after 13 weeks. In activity test, formulated cells in emulsion were more effective in inhibiting the growth of pathogen than unformulated cells in culture broth. Unformulated cells completely lost their antagonistic activity during storage under similar conditions. The W/O/W multiple emulsion formulation was shown to be useful as the novel liquid formulation for biological control.

Changes in Microbiological and Chemical Properties of Natural Water with the Storage Time and Temperature (시판 먹는 샘물의 저장 기간 및 온도에 따른 세균학적 및 화학적 품질 변화)

  • 박신인;이왕규;조윤정
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.1
    • /
    • pp.55-62
    • /
    • 1997
  • This study was carried out to investigate the microbiological and chemical properties of natural water during storage. The water samples were taken at the time of purchase and the opened bottles and unopened bottles stored at the temperature of 4$^{\circ}C$, 18$^{\circ}C$, and 3$0^{\circ}C$. The bacterial content normally rose to 2.06$\times$102 CFU/$m\ell$ for the unopened bottles and 2.91$\times$102 CFU/$m\ell$ for the opened bottles after 2 weeks of storage, and 1.21$\times$102 CFU/$m\ell$ and 2.64$\times$102, respectively, after 24 weeks of storage. The number of viable cells of bacteria peaked more rapidly at the storage temperature of 3$0^{\circ}C$ than 18$^{\circ}C$. But the total samples were found to be negative for coliforms test during the study period. The average range of pH value was from 7.39 to 7.76. The results showed that the nitrates and chlorides satisfied the Korea Drinking Water Quality Standards during the storage period of 24 weeks. However, the undesirable changes of the taste and odor were detected within 2 weeks and 3 weeks, respectively.

  • PDF

Effects of Spice Addition on the Inhibition of Bacterial Growth in Ground Chicken Meat (향신료 첨가에 의한 닭고기 분쇄육에서의 미생물 증식 억제 효과)

  • Seyun Jeong;Yong-Suk Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.1
    • /
    • pp.19-25
    • /
    • 2023
  • Addition of spice for inhibition of bacterial growth in ground chicken meat was investigated. The ground chicken meat approximately contained 72.98±0.15% moisture, 23.37±0.46% crude protein, 1.00±0.03% crude fat, and 1.90±0.03% ashes. Addition of rosemary showed the maximum bacterial inhibition, followed by garlic and mustard. The inhibitory effect increased with the addition of a greater quantity of spices. The optimal added concentration of spices for inhibition of total viable cell and proliferation of Escherichia coli in ground chicken meat was 2%, 4%, and 1.2% for rosemary, garlic, and mustard, respectively. The growth inhibition of total viable cells and E. coli differed during storage period for MixA (97.4%) > rosemary (96.9%) > MixB (96.3%) > garlic (53.7%) > mustard (33.3%). The addition of sterilized garlic to ground chicken meat showed that the total viable cells was low at 2.6-3.0 log CFU/g on the 0-day and 2.4-3.2 log CFU/g on the 9-day, and the number decreased as the storage lengthened. Non-sterilized garlic treatment showed a higher number of total viable cells than the control group, and this increased with elapse of storage time. The number of E. coli, was low at 0.4-1.0 log CFU/g on the 0-day and 0.5-1.5 log CFU/g on the 9-day for the sterilized group, and the change during the storage showed a similar trend for the total viable cells. In conclusion, the microbial safety of ground chicken meat products was improved by various mixed applications of rosemary, garlic, and mustard.

Microencapsulation Technology for Enhancement of Bifidobacterium spp. Viability: A Review (비피도박테리아의 생존성 증진을 위한 캡슐화 기술)

  • Song, Minyu;Park, Won Seo;Yoo, Jayeon;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.143-151
    • /
    • 2017
  • The intestinal microbiota has been shown to have a vital role in various aspects of human health, and accumulating evidence has shown the beneficial effects of supplementation with bifidobacteria for the improvement of human health, ranging from protection against infection to various positive effects. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Microencapsulation of probiotic bacterial cells provides protection against adverse conditions during processing, storage, and gastrointestinal passage. In this paper, we review the current knowledge, future prospects, and challenges of microencapsulation of probiotic Bifidobacterium spp.

Changes in the Microflora of Marine Fishes during Storage by Partial Freezing (해산어(海産魚)의 부분동결(部分凍結)에 의한 Microflora의 변화(變化))

  • Park, Chan-Sung;Choi, Kyoung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.1
    • /
    • pp.56-62
    • /
    • 1986
  • Marine fishes, sardine(Sardinops melanosticta), scad kingfish(Caranx equula), horse mackerel(Trachurus japonicus) and file fish(Navodon modestus), were stored for fifty days with partial freezing at$-3.5^{\circ}C$. During the storage, the changes in microflora and volatile nitrogen content was investigated. The fishes exhibited $10^4\;to\;10^6$ of bacterial cells per square centimeter of their skin just before they were submitted to the storage. The bacterial cell number was increased as $10^6\;to\;10^8$ cells as the storage time passed over twenty-two days. Offensive odor which is typical in the spoilage of fishes became strong as increase the bacterial cell numbe. The major isolates among the three hundred strains of bacteria isolated from the fish skins were identified as Pseudomonas I/II, III/IV-H, Vibrio and Moraxella. The same was found in the spoiled fishes, however, Pseudomonas I/II, was predominant on contrast to that of fresh fishes. Pseudomonas III/IV-NH, Flavobacterium, Cytophaga and Micrococcus were also found in early period of storage, but they disappeared as the progress of storage. Nine per cent of isolates were unidentified.

  • PDF

Effect of Paecilomyces japonica on the Microbiological Quality and Shelf-life of Jeungpyun (눈꽃동충하초(Paecilomyces japonica)를 첨가한 증편의 미생물학적 품질특성 및 저장성)

  • Park Chan-Sung;Choi Mi-Ae;Park Geum-Soon
    • Korean journal of food and cookery science
    • /
    • v.20 no.6 s.84
    • /
    • pp.561-567
    • /
    • 2004
  • The purpose of this study was to investigate the effect of Paecilomyces japonica mycelia(PJM) on pH, titrable acidity and microbiological qualify of Jeungpyun(fermented rice cake). Jeungpyun prepared with $0\~\%$ of PJM stored at $5^{\circ}C\;and\;20^{\circ}C$ for 4 weeks and 7 days respectively. Before fermentation of Jeungpyun dough, viable cells of total bacterial counts(TBC), yeasts and lactic acid bacteria(LAB) were $6.0\~9.8\times10^6,\;5.3\~9.0\times10^6,\;5.4\~8.5\times10^6\;CFU/g$, respectively. During the fermentation of dough, viable cells of TBC, yeasts and LAB increased $0.3\~0.4$ log cycle and pH was decreased whereas acidity increased as the progress of fermentation. Total viable cells in Jeungpyun before storage were $5.0\times10^1\;CFU/g$. During storage of Jeungpyun, TBC, yeasts and LAB of control group increased 2.6, 2.4, 2.1 log cycle at $5^{\circ}C$ and 4.8, 4.6, 4.5 log cycle at $50^{\circ}C$, respectively, when reached at maximum level. Major microflora of Jeungpyun was composed of yeasts and LAB during fermentation of dough and storage at $5^{\circ}C\;and\;20^{\circ}C$. Addition of PJM, inhibited the growth of microorganisms, the changes of PH and titrable acidity of Jeungpyun during storage at both of $5^{\circ}C\;and\;20^{\circ}C$. From these results, the addition of PJM extended the shelf-life of Jeungpyun during storage at $5^{\circ}C\;and\;20^{\circ}C$.

Antibacterial Activity of Edible Plant against Pathogenic Bacteria 1. Antibacterial Activity of Clove against Staphylococcus aureus (식용식물의 식중독세균에 대한 항균작용 1. Staphylococcus aureus에 대한 Clove의 항균작용)

  • 박찬성
    • Food Science and Preservation
    • /
    • v.5 no.1
    • /
    • pp.89-96
    • /
    • 1998
  • The antibacterial activity of clove (Eugenia caryophyllata Thumb) in culture troth against S. aureus was tested at 35, 5, -20, 50, 55 and 60$^{\circ}C$. Tryptic soy broth(TSB) containing 0∼0.5%(w/v) of clove was inoculated with 105∼107 CFU/ml of S. aureus and incubated at each temperature. The growth of S. aureus occured at 0.1% clove after a prolonged lag period while viable cells of S. aureus decreased more than 2 log cycles at 0.3 and 0.4% clove during 12 hours storage at 35$^{\circ}C$. During 32 days of refrigerated storage at 5$^{\circ}C$, survivors of S. aureus were decreased with the progress of time and increasing clove concentration. At the presence of 0.2, 0.3 and 0.4% clove, bacterial cells were dead after 32, 20 and 16 days of refrigerated storage, respectively. During 32 days of frozen storage at -20$^{\circ}C$, survivors of S. aureus were decreased less than 0.5 log cycle at 0% clove. At the presence of 0.1∼0.4% clove, survivors were decreased 2.5∼3.0 log cycles after 1 day and then decreased 0.4∼0.8 log cycles through the frozen storage. There were small changes in populations of S. aureus in TSB between different concentrations of clove during frozen storage. The D-values of S. aureus at clove 0, 0,2, 0.4% were 28.53, 15.14, 8.9 min at 50$^{\circ}C$, 18.43, 10.32, 6.74 min at 55$^{\circ}C$ and 12.78, 9.88, 5.72 min at 60$^{\circ}C$, respectively. The D-values for S. aureus were decreased with the increasing temperature and clove concentration.

  • PDF

A microbiological Investigation of Barley Drink During Storag (보리차 저장시의 변패 및 변패미생물에 관한 연구)

  • Lee, Min-Jeong;Yoo, Yang-Ja;Kyung, Kyu-Hang
    • Korean journal of food and cookery science
    • /
    • v.6 no.2
    • /
    • pp.51-58
    • /
    • 1990
  • Quality deterioration of barley drink during storage was examined by measuring viable count, titratable acidity (TA), turbidity and pH of barley drinks with or without barley particles stored at temperatures of 20, 25, 30, and 35$^{\circ}C$. Qualitative analysis of organic acids in spoiled barley drink was also performed. TA of barley drink during storage increased to 0.009, 0.0095, 0.0097 and 0.020% at 20, 25, 30 and 35$^{\circ}C$, respectively. TA reached the mixima between 7 and 10 days of storage and reduced from then on. pH values followed the exactly reverse trend of TA. The rate of bacterial spoilage of barley drinks was faster when it was stored at higher temperatures. The numbers of bacteria were in the range between 9.0${\times}10^6-8.0{\times}10^8$ cells/ml depending on the storage temperatures and the different brands. Those samples with higher bacterial growths showed higher optical densities. Volatile organic acids such as acetic, formic, propionic, isobutyric, isovaleric acids were detected in addition to ethyl alcohol. Non-volatile organic acids such as pyruvic, lactic, oxalacetic, succinic, fumaric acids were detected. Among them, acetic acids were most important in their quantities. Five different kinds of spoilage bacteria were isolated and identified as Bacillus Licheniformis, Bacillus coagulans, Badillus cirulans, Bacillus stearothermophilus and Bacillus brevis, all of which were found to form endospores.

  • PDF