• Title/Summary/Keyword: storage bacteria

Search Result 1,073, Processing Time 0.038 seconds

Antimicrobial Activities of Opuntia ficus-indica var. saboten Makino Methanol Extract (손바닥선인장 줄기 methanol 추출물의 항균활성)

  • Kim Hae-Nam;Kwon Do-Hoon;Kim Hae-Yun;Jun Hong-Ki
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.279-286
    • /
    • 2005
  • The Opuntia ficus-indica var. saboten Makino (Cactus) is a tropical or subtropical plant, which is cultivated or grows naturally in Jeju island. It has been widely used as folk medicine for burned wound, edema and indigestion. In addition, its extract has been claimed to have several biological activities including anti-inflammation in oriental medicine. In this study, we examined the antimicrobial activities of the methanol extract of Opuntia ficus-indica var. saboten Makino. The extract showed a broad spectrum of antimicrobial activity against pathogenic bacteria, including antibiotics resistant bacteria (MRSA, R-P. aeruginosa, VRE) and Propionibacterium acnes, yeast, and fungi. The extract retained the activity after heat treatment for 15 min at $100^{\circ}C$ and $121^{\circ}C$ and after extended storage, up to 10 weeks storage period at $4^{\circ}C$ and $25^{\circ}C$, also stably retained its activity. It showed a better inhibitoring effect to the growth of E. coli than sodium benzoate did it at the same concentration. Addition of various salts or metal ions did not affect on its antimicrobial activity. Therefore, the antimicrobial characteristics of the extract can be applicable as a natural preservative and an antimicrobial agent for bacterial disease.

Carbon Storage Regulator A (csrA) Gene Regulates Motility and Growth of Bacillus licheniformis in the Presence of Hydrocarbons

  • Angel, Laura Iztacihuatl Serrano;Segura, Daniel;Jimenez, Jeiry Toribio;Barrera, Miguel Angel Rodriguez;Pineda, Carlos Ortuno;Ramirez, Yanet Romero
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.185-192
    • /
    • 2020
  • The global carbon storage regulator (Csr) system is conserved in bacteria and functions as a regulator in the exponential and stationary phases of growth in batch culture. The Csr system plays a role in the central carbon metabolism, virulence, motility, resistance to oxidative stress, and biofilm formation. Although the Csr was extensively studied in Gram negative bacteria, it has been reported only in the control of motility in Bacillus subtilis among Gram positive bacteria. The goal of this study was to explore the role of the csrA gene of Bacillus licheniformis M2-7 on motility and the bacterial ability to use hydrocarbons as carbon source. We deleted the csrA gene of B. licheniformis M2-7 using the plasmid pCsr-L, harboring the spectinomycin cassette obtained from the plasmid pHP45-omega2. Mutants were grown on culture medium supplemented with 2% glucose or 0.1% gasoline and motility was assessed by electron microscopy. We observed that CsrA negatively regulates motility by controlling the expression of the hag gene and the synthesis of flagellin. Notably, we showed the ability of B. licheniformis to use gasoline as a unique carbon source. Our results demonstrated that CsrA is an indispensable regulator for the growth of B. licheniformis M2-7 on gasoline.

Quality Changes and Shelf-life of Cut Cabbage Kimchi under Various Storage Temperatures and Packing Materials (저장온도 및 포장재에 따른 절단배추 김치의 품질변화 및 Shelf-life)

  • Choe, Gi-Chan;Kim, Mi-Yeon;Jeong, Sin-Gyo
    • Food Science and Preservation
    • /
    • v.2 no.2
    • /
    • pp.277-284
    • /
    • 1995
  • To study the shelf-life of cut cabbage kimchi, we examined the several quality characteristics of cabbage kimchi under various storage temperatures and packing materials. The pH of kimchi extracts were decreased to 4.0 in the condition of storage at 8$^{\circ}C$ during 6 days, at 4$^{\circ}C$ during 18days, 0$^{\circ}C$ during 42 days. The increase patterns of the organic acid were reverse to the changes of pH under the all conditions. The contents of reducing sugar were continuously decreased at 8$^{\circ}C$ , but increased gradually at 0$^{\circ}C$ and 4$^{\circ}C$ storage conditions. The contents of vitamine C were decreased at the early storage but increased to optimum ripening stage of pH 4.2-4.4 and after decreased continuously. The total bacterial cell counts of cabbage kimchi were increased suddenly at the early storage and after decreased gradually. And at the higher storage temperature, the more lactic acid bacteria were. On the results of sensory evaluation of cabbage kimchi at marketable shelf-life, sour taste and sour smell were significant under all experimental conditions by Duncan's multiple range test. On the above all results, we concluded that the marketable shelf-life of cut cabbage kimchi were 42 days, 19 days, 6 days at 0$^{\circ}C$, 4$^{\circ}C$, 8$^{\circ}C$ storage condition respectively.

  • PDF

Effect of Atmosphere Sterilization Using Acidic Electrolyzed Water on Storage Quality and Microbial Growth in Grapes (전해산성수에 의한 저장기체살균이 포도의 품질특성과 부패균 생육에 미치는 영향)

  • 김성환;정헌식;이주백;강준수;정신교;최종욱
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.4
    • /
    • pp.549-554
    • /
    • 2003
  • This study was conducted to investigate the effect of storage atmosphere sterilization using acidic electrolyzed water for table grapes (Vitis labrusca L.). ‘Campbell Early’ and ‘Sheridan’ grapes were stored at $0^{\circ}C$ for 12 weeks under the atmosphere that was passed through an acidic electrolyzed water for sterilization. Storage atmosphere sterilization using acidic electrolyzed water did not influence on the changes in soluble solids, titratable acidity, soluble tannins, anthocyanins, ethanol, acetaldehyde and organoleptic quality attributes including color, aroma, texture, juiciness and sweetness of both varieties during storage. Growth of bacteria and fungus in grapes during storage, however, was inhibited by storage atmosphere sterilization. These results suggest that the storage atmosphere sterilization using acidic electrolyzed water can be utilized for improving the storage life of table grapes.

Changes in quality parameters of tomatoes during storage: a review

  • Jung, Jae-Min;Shim, Joon-Yong;Chung, Sun-Ok;Hwang, Yong-Soo;Lee, Wang-Hee;Lee, Hoonsoo
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.2
    • /
    • pp.239-256
    • /
    • 2019
  • The quality of tomatoes drastically changes according to storage conditions, such as temperature, humidity, and air composition. High storage temperatures result in the degradation of the firmness and color of tomatoes and in decay by bacteria, whereas chilling injury and softening can be caused by storage at low temperatures. The gas composition in the storage and packaging are other parameters that influence the quality and shelf life of tomatoes by preventing excessive transpiration and respiration. In addition, tomato quality is dependent on the degree of maturity and harvest season. Because there are many quality parameters, it is necessary to systemically establish an optimal standard, and this approach requires collecting and reviewing various data on storage conditions. The aim of this review was to provide basic information by comparing and analyzing studies on the changes in tomato quality (firmness, color, lycopene content, and acidity of tomatoes) during storage and to describe a few models that can assess the quality parameters. Many studies have provided results from experiments on the effects of postharvest control (e.g., storage temperature, packaging film, and gas treatment, as reviewed above) on tomato quality including firmness, soluble solids content, and lycopene content. However, it is still necessary to conduct an overall analysis of the published conditions and to determine the best method for preserving the quality of tomatoes as well as other fruits.

Microbiological Safety of Various Gouda Cheeses Produced from Raw Milk (비살균 원유로 제조된 다양한 Gouda 치즈의 미생물 안전성)

  • Choi, Cheol;Kim, Dong-Hyeon;Lim, Hyun-Woo;Chon, Jung-Whan;Song, Kwang-Young;Kim, Se-Hyung;Kim, Hyunsook;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.106-120
    • /
    • 2018
  • Since 2018, the production and sales of ram-milk cheese ripened for over 60 days has been permitted in South Korea. Hence, this study aimed to examine the microbiological changes in 7 different types of Gouda cheese. During the aging period, traditional raw-milk Gouda Cheeses 1 and 2 did not contain Salmonella spp. during the 60-day storage period and no E. coli after 20-day storage. Coliform bacteria were not detected in Cheese 1 after 40 days; however, they were detected in Cheese 2 up to 60 days. Salmonella spp. were inhibited during the 60-day storage period in Cheese 3 (Salmonella spp.-contaminated raw-milk Gouda cheese), Cheese 4 (Cheese 3 contaminated with lactic acid bacteria DH 5 isolated from Kefir) and Cheese 5 (Cheese 3 contaminated with lactic acid bacteria DN1 isolated from Kefir). In particular, inhibition of Salmonella spp. was more prominent in Cheese 4 and Cheese 5 than in Cheese 3. During 60-day storage, Cheese 6 had a significantly reduced lactic acid bacteria. Furthermore, in Cheese 7, E. coli, E. Salmonella ssp. were rarely detected, and lactic acid bacteria were slightly greater in Cheese 7 than in other cheeses during the 60-day period. Moreover, all samples from Cheese 1 to Cheese 7 were not contaminated with Listeria monocytogenes, Staphylococcus aureus, Clostridium perfringens, and E. coli O157:H7.

Quality Changes in Brined Baechu Cabbage using Different Types of Polyethylene Film, and Salt Content during Storage (절임배추 저장 중 폴리에틸렌 포장필름 종류와 소금 절임 농도에 따른 품질변화)

  • Kim, Young-Wook;Jung, Ji-Kang;Cho, Young-Jin;Lee, Sun-Jin;Kim, So-Hee;Park, Kun-Young;Kang, Soon-Ah
    • Food Science and Preservation
    • /
    • v.16 no.5
    • /
    • pp.605-611
    • /
    • 2009
  • Korean Baechu cabbage(known as Chinese cabbage) brined in 0%, 5% and 10% (all w/v) salt solutions were packed using high-density polyethylene film (HDPE-film), low-density polyethylene film (LDPE-film), or Mirafresh film (MF-film, US patent No. 5972815), and stored at 4C for 4 weeks. Changes in pH and salinity, and microorganism counts (lactic acid bacteria and total bacteria), were investigated. There was no significant difference in the pH change in cabbage stored using various films when the vegetables were not salted. However, the pH was most stable in Baechu cabbage prepared using 10% salt solution. Cabbage treated with 0%, 5%, and 10% salt showed salinity values of 0.83%, 1.17% and 1.62%(all w/w), respectively, after 4 weeks of storage by LDPE-film. When cabbage was treated with the highest concentration of salt solution, the count of lactic acid bacteria increased but that of total bacteria decreased. The pH from pH 6.10 to pH 4.32, pH 5.68, and pH 5.92 in brined cabbage packed in HDPE-film, LDPE-film, and MF-film, respectively, after 4 weeks. When MF-film was used, the pH showed the greatest stability of all films tested, regardless of the concentration of salt solution employed in brining. The counts of lactic acid bacteria and total bacteria increased by all tested films during storage. Cabbage packed by MF-film showed the lowest increase in bacterial counts. In conclusion, MF-film was found to be the most effective packaging material for Baechu cabbage and brining in 10% salt solution was optimal to enhance the shelf life of the vegetable. LDPE-film was more effective than was HDPE-film for storage of brined cabbage.

Effect of UV-C Irradiation on the Quality of Red Pepper Powder during Storage (UV-C 조사가 고춧가루의 저장 중 품질에 미치는 영향)

  • Chun, Ho-Hyun;Kim, Ju-Yeon;Kim, Hyun-Jin;Song, Kyung-Bin
    • Food Science and Preservation
    • /
    • v.16 no.3
    • /
    • pp.454-458
    • /
    • 2009
  • The effect of UV-C irradiation on microbial growth and quality of red pepper powder during storage was examined. Red pepper powder was irradiated with doses of 27, 54, or $108\;kJ/m^2$ and stored at $20^{\circ}C$ for 4 weeks. UV-C treatment of red pepper powder decreased the populations of total aerobic bacteria and Bacillus cereus in proportion to radiation dose. In particular, total aerobic bacteria and B. cereus populations decreased by 1.03 and 0.90 log CFU/g after irradiation at $108\;kJ/m^2$, respectively, compared with control values. UV-C irradiation caused negligible changes in the Hunter color L, a, or b values. Sensory quality results on red pepper powder were not significantly different between treatments. Therefore, UV-C irradiation can be used to inhibit microbial growth in red pepper powder, without impairing quality during storage.

Changes in the Quality Characteristics of Aralia continentalis Kitagawa Pickle during Storage (땅두릅 피클의 저장기간 중 품질특성 변화)

  • Han, Gwi-Jung;Shin, Dong-Sun;Jang, Myung-Sook
    • Korean journal of food and cookery science
    • /
    • v.23 no.3 s.99
    • /
    • pp.294-301
    • /
    • 2007
  • The objectives of this study was to examine the characteristics of Aralia pickles(soy sauce, salt) made with different CaCl$_2$ treatments and seasonings by documenting the changes that occurred the courses of preparation and preservation. The results indicated that the various pickle samples had no visible changes in pH, acidity or salinity. The sum of total viable bacteria and lactic acid bacteria increased gradually during the early stage of preservation and then accelerated growth was shown up until the fifth month of storage; a plateau was maintained until a decrease began at 6 months. We observed no visible changes in color during the preservation period. The sample treated with CaCl$_2$ exhibited a higher degree of hardness than the untreated sample, although no distinctive differences were noted during the sensory test.

Quality and Shelf-life of Vacuum and Aerobic Packed Chevon Patties under Refrigeration

  • Rajkumar, V.;Agnihotri, M.K.;Sharma, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.4
    • /
    • pp.548-553
    • /
    • 2004
  • Patties were prepared using Barbari male goats meat (age about 4 yrs) and packed in HDPE under vacuum (VP) and aerobically (AP). Packed patties were stored at 4$\pm$1$^{\circ}C$ and evaluated for physico-chemical, microbiological and sensory changes on days 0, 5, 10, 15, 20 and 25. Overall mean water activity ($a_{w}$), moisture (%), fat (%), pH, TBA number and W-B shear force values (kg/$cm^{2}$) of patties were 0.983, 61.93, 18.39, 6.38, 0.150 and 0.86, respectively. Except pH that was significantly higher and TBA number significantly lower in VP patties, treatment had no significant (p>0.05) effect on other physico-chemical traits. However, storage period significantly (p<0.05) affected physico-chemical traits. Moisture (63.79%) and $a_{w}$ (0.985) were significantly (p<0.05) higher on day 25. Patties became firmer on day 20 onwards as indicated by higher W-B shear force. Though packaging method had no significant effect, storage period influenced microbial counts. The standard plate counts (SPC), which were initially log 5.98 CFU/g decreased significantly (p<0.05) on day 10 followed by steady increase and reaching log 4.89 on day 25. Almost similar trend was observed for psychrotrophic bacteria counts. Lactic acid bacteria counts declined as the storage period progressed. Coliforms, and yeast and mould counts were either not detected by the method used or were very low in numbers. All samples of AP patties revealed swollen, greasy and sticky surface with spongy texture on day 20 whereas only some of the VP patties shown such changes on day 20. Results indicated that vacuum packaging had definite advantage in preserving the sensory quality of patties than aerobic packaging but it did not help in extending the shelf-life beyond 15 days.