• Title/Summary/Keyword: storage and loss moduli

Search Result 40, Processing Time 0.03 seconds

Effect of Fermentation Temperature on Rheological Properties of Traditional Kochujang (숙성온도가 전통 고추장의 레올로지 특성에 미치는 영향)

  • 유병승;노완섭
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.5
    • /
    • pp.860-864
    • /
    • 2000
  • The steady and dynamic shear rheological properties of traditional kochujang fermented at three different temperatures (20${^circ}C$, 25${^circ}C$ and 30${^circ}C$) were studied. Flow of kochujang samples showed time dependence, which was quantitatively described by the Weltman model, Kochujang samples were highly shear thinning fluids (n=0.25~0.27) with large magnitudes of Casson yield stresses (1.09~1.21 kPa). Consistency index (K) and apparent viscosity (${\eta}_{a,20}$) increased with increase in fermentation temperature of kochujang. Storage (G') and loss (G") moduli increased with increase in frequency (ω), while complex viscosity (${\eta}^{\ast}$) decreased. Based on dynamic shear data, kochujang samples exhibit structural properties similar to weak gels. The complex and steady shear viscosities at different fermentation temperatures followed the Cox-Merz superposition rule with the application of the shift factor (a=0.011~0.016).

  • PDF

Using oscillatory shear to probe the effects of bidispersity in inverse ferrofluids

  • Ekwebelam, C.C.;See, H.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.1
    • /
    • pp.35-42
    • /
    • 2007
  • The effects of particle size distribution on the magnetorheological response of inverse ferrofluids was investigated using controlled mixtures of two monodisperse non-magnetisable powders of sizes $4.6\;{\mu}m\;and\;80{\mu}m$ at constant volume fraction of 30%, subjected to large amplitude oscillatory shear flow. In the linear viscoelastic regime (pre-yield region), it was found that the storage and loss moduli were dependent on the particle size as well as the proportion of small particles, with the highest storage modulus occurring for the monodisperse small particles. In the nonlinear regime (post yield region), Fourier analysis was used to compare the behaviour of the $1^{st}\;and\;3^{rd}$ harmonics ($I_{1}\;and\;I_{3}\;respectively$) as well as the fundamental phase angle as functions of the applied strain amplitude. The ratio of $I_{3}/I_{1}$ was found to become more pronounced with decreasing particle size as well as with increasing proportion of small particles in the bidisperse mixtures. Furthermore, the phase angle was able to clearly show the transition from solid-like to viscous behaviour. The results suggested that the nonlinear response of a bidisperse IFF is dependent on particle size as well as the proportion of small particles in the system.

Carbon Nanotube/Nafion Composites for Biomimetic Artificial Muscle Actuators

  • Lee, Se-Jong;Yoon, Hyun-Woo;Lee, Deuk-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.198-201
    • /
    • 2007
  • Multi-walled carbon nanotube (M-CNT)/Nafion nanocomposites were prepared by solution casting to elucidate the effect of M-CNT addition, from 0 to 7 wt%, on the viscoelastic behavior of the composites. The M-CNT bundles induced by the Nafion polymer were determined to be uniformly distributed for the 1 wt% M-CNT/Nafion nanocomposites. The 1 wt% M-CNT/Nafion composite exhibited the highest blocking stress of 2.3 kPa due to its high elastic modulus of 0.485 GPa. From a dynamic mechanical analysis, the 1 wt% M-CNT had the highest storage and loss moduli compared with the other samples in all frequency and temperature ranges. From the storage modulus data, the M-CNT loaded composites had similar $T_g$ values near $120^{\circ}C$. The glass transition temperatures of the M-CNT loaded composites were $120^{\circ}C$ (1 wt%), $117^{\circ}C$ (3 wt%), $117^{\circ}C$ (5 wt%), and $135^{\circ}C$ (7 wt%), suggesting that the effect of the M-CNTs on the Nafion film begins at 1 wt%. Thus, it has been concluded that the 1 wt% M-CNT disported composite is attractive for actuator applications.

The Effect of Drawing and Annealing Condition on the Fine Structure of PET Film (연신 및 열처리 조건이 PET film의 미세구조에 미치는 영향)

  • Park, Jong-Bum;Choi, Suk-Chui;Cho, Hyun-Hok
    • Textile Coloration and Finishing
    • /
    • v.3 no.1
    • /
    • pp.8-16
    • /
    • 1991
  • In order to investigate the fine structure of PET films, PET films were stretchd at various draw ratios (2, 3, 4, 5) below $T_g$ ($72^{\circ}C$) and then annealed at various temperatures (125, 150, 175, $200^{\circ}C$) under free-annealed (FA) and taut-annealed (TA) conditions. Such changes as thermal shrinkage, crystallinity, crystallite size, dynamic viscoelasticity and thermal behaviour were measured in relation to the draw ratio and annealing condition.The following results were obtained. 1. Thermal shirinkage increased with increasing annealing temperature and draw ratio, but decreased in case of draw ratio 4 (draw ratio 3 at $200^{\circ}C$) and above it. 2. The degree of crystallinity of FA samples were higher than those of TA samples. 3. Tan 5 of TA samples were less than those of FA samples, and storage moduli (E') and loss moduli (E") of FA samples were less than those of TA samples; moreover, maximum tan '||'&'||' temperature of FA samples were shifted toward higher temperature than those of TA samples. 4. The melting endotherm ($T_m$) and heat of fusion $(\DeltaH)$ of the PET film increased with the draw ratio and annealing temperature; in addition, premelting endotherm ($T_m$) and heat of fusion $(\DeltaH)$ of the local crystallization in the FA samples were larger than those of TA samples. 5. The X-ray diffraction pattern displayed sharp peaks gradually with the draw ratio and annealing temperature. 6. Crystallite sizes of FA samples were larger than those of TA samples.

  • PDF

Mechanical Properties of Styrene-Butadiene Rubber Reinforced with Hybrids of Chitosan and Bamboo Charcoal/Silica

  • Li, Xiang Xu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.22-29
    • /
    • 2019
  • Chitosan-polyvinyl alcohol (PVA) -bamboo charcoal/silica (CS-PVA-BC/SI) hybrid fillers with compatibilized styrene-butadiene rubber (SBR) composites were fabricated by the interpenetrating polymer network (IPN) method. The structure and composition of the composite samples were characterized by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The viscoelastic behaviors of the rubber composites and their vulcanizates were explored using a rubber processing analyzer (RPA) in the rheometer, strain sweep and temperature sweep modes. The storage and loss moduli of SBR increased significantly with the incorporation of different hybrid fillers, which was attributed to the formation of an interphase between the hybrid fillers and rubber matrix, and the effective dispersion of the hybrid fillers. The mechanical properties (hardness, tensile strength, oxygen transmission rate, and swelling rate) of the composite samples were characterized in detail. From the results of the mechanical test, it was found that BC-CS-PVA0SBR had the best mechanical properties. Therefore, the BC-CS-PVA hybrid filler provided the best reinforcement effects for the SBR latex in this research.

Structure-property relations for polymer melts: comparison of linear low-density polyethylene and isotactic polypropylene

  • Drozdov, A.D.;Al-Mulla, A.;Gupta, R.K.
    • Advances in materials Research
    • /
    • v.1 no.4
    • /
    • pp.245-268
    • /
    • 2012
  • Results of isothermal torsional oscillation tests are reported on melts of linear low density polyethylene and isotactic polypropylene. Prior to rheological tests, specimens were annealed at various temperatures ranging from $T_a$ = 180 to $310^{\circ}C$ for various amounts of time (from 30 to 120 min). Thermal treatment induced degradation of the melts and caused pronounced decreases in their molecular weights. With reference to the concept of transient networks, constitutive equations are developed for the viscoelastic response of polymer melts. A melt is treated as an equivalent network of strands bridged by junctions (entanglements and physical cross-links). The time-dependent response of the network is modelled as separation of active strands from and merging of dangling strands with temporary nodes. The stress-strain relations involve three adjustable parameters (the instantaneous shear modulus, the average activation energy for detachment of active strands, and the standard deviation of activation energies) that are determined by matching the dependencies of storage and loss moduli on frequency of oscillations. Good agreement is demonstrated between the experimental data and the results of numerical simulation. The study focuses on the effect of molecular weight of polymer melts on the material constants in the constitutive equations.

Analysis of building frames with viscoelastic dampers under base excitation

  • Shukla, A.K.;Datta, T.K.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.71-87
    • /
    • 2001
  • A frequency domain response analysis is presented for building frames passively controlled by viscoelastic dampers, under harmonic ground excitation. Three different models are used to represent the linear dynamic force-deformation characteristics of viscoelastic dampers namely, Kelvin model, Linear hysteretic model and Maxwell model. The frequency domain solution is obtained by (i) an iterative pseudo-force method, which uses undamped mode shapes and frequencies of the system, (ii) an approximate modal strain energy method, which uses an equivalent modal damping of the system in each mode of vibration, and (iii) an exact method which uses complex frequency response function of the system. The responses obtained by three different methods are compared for different combinations of viscoelastic dampers giving rise to both classically and non-classically damped cases. In addition, the effect of the modelling of viscoelastic dampers on the response is investigated for a certain frequency range of interest. The results of the study are useful in appropriate modelling of viscoelastic dampers and in understanding the implication of using modal analysis procedure for building frames which are passively controlled by viscoelastic dampers against base excitation.

Dynamic Rheological Properties of Hydroxypropylated Rice Starches during the Aging Process (Aging 과정 중 하드록시프로필화 쌀전분의 동적 레올로지 특성)

  • Choi, Hye-Mi;Yoo, Byoung-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.584-587
    • /
    • 2007
  • The effect of molar substitution (MS, 0.030-0.118) on the dynamic rheological properties of hydroxypropylated rice starch pastes (5%, w/w) was investigated by small-deformation oscillatory measurements during aging. The magnitudes of storage (G#) and loss (G") moduli measured at $4^{\circ}C$ before aging increased with an increase in MS in the range of 0.030-0.118, while those of tan ${\delta}$ (the ratio of G"/G#) decreased. The G# values of hydroxypropylated rice starches, as a function of aging time (10 hr) at $4^{\circ}C$, increased rapidly at the initial stage, and then reached a plateau region at shorter aging times. However, for the native starch, the plateau values were not observed for G# after a long aging time. Increasing the MS resulted in a decrease in plateau values. The rate constant (K) for structure development during aging was described by first-order kinetics. The K values of hydroxypropylated rice starches at 0.086 and 0.118 MS were much lower than the K value at 0.030 MS.

Effects of Transglutaminase on Pasting and Rheological Properties of Different Wheat Cultivars Blended with Barley or Soy Flour

  • Ahn, Hyun-Joo;Kim, Jae-Hyun;Chang, Yoon-Hyuk;Steffe, James F.;Ng, Perry K.W.;Park, Hee-Ra
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.52-57
    • /
    • 2008
  • The effects of transglutaminase (TG) on the pasting and rheological properties of different wheat cultivars ('Sharpshooter', 'Russ', and 'AcAriss') blended with barley (40%) or soy (20%) flour were investigated. In the rapid visco-analyzer (RVA) pasting profile, the addition of barley or soy flour to wheat flour samples induced a decrease in peak, trough, final viscosity, breakdown and setback values. However, TG treatment of these blends significantly increased peak viscosity and breakdown (p<0.05). In particular, TG treatment greatly increased the breakdown of wheat flour blended with soy flour, indicating that the cross-linking of proteins through TG may somehow be related to an increase in starch granule rupturing in pastes. Storage (G') and loss (G") moduli of the sample pastes increased with an increase in frequency ($\omega$), while complex viscosity (${\eta}*$) decreased. In all wheat cultivars, G', G", and $\eta$ were decreased by the addition of barley or soy flour, or TG treatment. Results suggest that protein cross-linking by TG can produce unique and improved properties in wheat flours blended with barley or soy flour.

Rheological Properties of Dandelion Root Concentrates by Extraction Solvents

  • Lee, Ok-Hwan;Kang, Suk-Nam;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2006
  • This study was performed to provide basic rheological data of dandelion root concentrates in order to predict their processing aptitude and usefulness as functional foods material. The hot water and 70% ethanol extracts of dandelion root were concentrated at 5, 20, and 50 Brix, and their static viscosity, dynamic viscosity, and Arrhenius plots were investigated. Almost all hot water concentrates showed the typical flow properties of a pseudoplastic fluid, but evaluation using the power law model indicated that the 70% ethanol concentrates showed a flow behavior close to a Newtonian fluid. The apparent viscosity of hot water and 70% ethanol concentrates decreased with increasing temperature. Yield stresses of hot water and 70% ethanol concentrates by Herschel-Bulkley model application were in the range of 0.026 - 1.368 Pa and 0.022 - 0.238 Pa, respectively. The effect of temperature and concentration on the apparent viscosity was examined by Arrhenius equation. The activation energies of hot water and 70% ethanol concentrates were in the range of $8.762-23.778{\times}10^3\;J/mol{\cdot}kg$ and $3.217-20.384{\times}10^3\;J/mol{\cdot}kg$ with increasing concentration, respectively. Storage (G') and loss (G") moduli were generally increased with increasing frequency. For the 70% ethanol concentrates, G" predominated over G' at all applied frequencies and so they showed the typical flow behavior of a low molecular solution. However, for the hot water concentrates, G' predominated over G" at more than 1.9 rad/sec (cross-over point) and so they showed the typical flow behavior of a macromolecular solution.