• Title/Summary/Keyword: storage and loss moduli

Search Result 40, Processing Time 0.027 seconds

The effect of calcium concentration and temperature on the gelation of Aigeok Polysaccharide (Aigeok polysaccharide의 겔화에 미치는 칼슘농도와 온도의 효과)

  • Lee, Hyang-Aee;Kim, Keyng-Yi
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.7-11
    • /
    • 2001
  • The influence of temperature and calcium concentration on the gelation kinetics of purified Aigeok system has been investigated by small deformation oscillatory measurement. DE(degree of esterification) of the present sample was indicated of low methoxyl Aigeok polysaccharide by FT-IR. The calcium induced gelation of Aigeok has been studied. Both moduli reached the saturation value during the period of experiments. Rate constant increased with increasing calcium concentration, however above 4.08 mM calcium chloride caused a sudden drop in gel strength. The experimental result that the decrease in gel strength at high calcium concentration was seems to be phase separation or competitive inhibition between calcium ions. The storage and loss shear moduli decreased with increasing temperature. The rate constant of Aigeok system remarkably dropped above $35^{\circ}C$. Thus hydrogen bonding is prior to hydrophobic interaction for Aigeok molecule.

  • PDF

Effect of Sugars on Thermal Gelation of Surimi Sols

  • Lim, Seung-Taik;Lee, Young-Seung;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.340-343
    • /
    • 2005
  • Surimi samples were prepared with the addition of three different sugars (sucrose, glucose, and fructose) at 8% and the thermal gelation of surimi sols was investigated by small-deformation oscillatory measurements of storage (G') and loss (G") moduli. The magnitudes of G' at $10^{\circ}C$ were much greater than G" over the entire range of frequency (${\omega}$), with little dependence on ${\omega}$. In general, G' values of surimi sol containing sucrose during heating (from 10 to $95^{\circ}C$) was pronounced than those of glucose and fructose, showing the following order: sucrose>glucose>fructose. The transition peaks of surimi sols containing sugars were in the temperature range of $34.8-37.4^{\circ}C$.

Thermomechanical Properties of Poly(D, L-actic-co-glycolic acid) and Graphene Oxide Nanocomposite for Scaffolds

  • Sohn, Il-Yung;Yoon, Ok-Ja;Kim, Duck-Jin;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.478-478
    • /
    • 2011
  • The thermomechanical and surface chemical properties of nanocomposite of poly( D, L-actic-co-glycolic acid) (PLGA) were improved significant due to concentration of graphene oxide (GO) nanosheets as nanoscale fillers to PLGA film. Thermomechanical properties of the PLGA/GO (2wt.-%.) nanocomposite were decreased crystallization and melting temperature, weight loss. The storage and loss moduli of the nanocomposite were enhanced by chemical bonding between the oxygenated functional groups of the GO nanosheets and the polymer chains in the PLGA matrix. Enhanced hydrophilicity of nanocomposite caused by embedded GO nanosheets also improved for good biocompatibility. Our findings indicate that thermomechanical properties and biocompatibility of nanocomposite embedded with GO nanosheets are attractive candidates for use in biomedical applications such as scaffolds.

  • PDF

Material Characterization of MR Fluids at High Frequencies (고주파 영역에서의 MR 유체 특성연구)

  • Park, Kyoung-Mi;Kim, Jae-Hwan;Choi, Seung-Bok;Kim, Kyung-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.210-215
    • /
    • 2002
  • MR(Magnetorheogical) fluid composed of fine iron powders dispersed in silicon oil is utilized to many smart structures and devices because of its significant rheological property change by the application of an external magnetic field. When we deal with the shock wave attenuation of warship structures, we should be able to characterize the high frequency behavior of MR fluids. So far, however, many efforts have been focused on the material characterization of MR fluids at low frequencies below 100Hz. In this paper, the MR fluid property characterization at high frequency region is performed. An experimental setup based on wave transmission technique is made and the storage modulus as well as the loss modulus of MR fluids are found from the measured data of speed sound and attenuation. Details of the experiment are addressed and the obtained storage and loss moduli are addressed at $50kHz{\sim}100kHz$.

  • PDF

Rheological Behavior of Sweet Potato Starch-Glucose Composites

  • Cho, Sun-A;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.417-420
    • /
    • 2008
  • Rheological properties of sweet potato starch (SPS)-glucose composites (5%, w/w) at different concentrations (0, 10, 20, and 30%, w/w) of glucose were investigated in steady and dynamic shear. The steady shear rheological properties of SPS-glucose composites were determined from rheological parameters for power law and Casson flow models. At $25^{\circ}C$ all the samples showed a pronounced shear-thinning behaviors (n=0.29-0.37) with high Casson yield stress. In general, the presence of glucose resulted in the decrease in consistence index (K), apparent viscosity (${\eta}_{a,100}$), and yield stress (${\sigma}_{oc}$). Storage (G') and loss (G") moduli increased with an increase in frequency ($\omega$), while complex viscosity (${\eta}*$) decreased. Dynamic moduli (G', G", and ${\eta}*$) of the SPS-glucose composites at higher glucose concentrations (20 and 30%) were higher than those of the control (0% glucose) and also increased with increasing glucose concentration from 10 to 30%. The effect of glucose on steady and dynamic shear rheological properties of the SPS pastes appears to greatly depend on glucose concentration in the range of 10-30%.

Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing

  • Koo, Min Ye;Shin, Hon Chung;Kim, Won-Seok;Lee, Gyo Woo
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.255-261
    • /
    • 2014
  • Multi-walled carbon nanotube reinforced epoxy composites were fabricated using shear mixing and sonication. The mechanical, viscoelastic, thermal, and electrical properties of the fabricated specimens were measured and evaluated. From the images and the results of the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content showed better dispersion and higher strength than those of the other specimens. The Young's moduli of the specimens increased as the nanotube filler content was increased in the matrix. As the concentrations of nanotubes filler were increased in the composite specimens, their storage and loss moduli also tended to increase. The specimen having a nanotube filler content of 0.6 wt% showed higher thermal conductivity than that of the other specimens. On the other hand, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value than that of the other specimens. The electrical conductivities also increased with increasing content of nanotube filler. Based on the measured and evaluated properties of the composites, it is believed that the simple and efficient fabrication process used in this study was sufficient to obtain improved properties in the specimens.

A Viscoelastic Study of Glass Transition and Degradation Processes of Phenolic Resin/Carbon Fiber Composites (페놀수지/탄소섬유 열경화성 복합재료의 유리전이와 고온 분해과정에서 관찰되는 점탄성 특성 연구)

  • ;J. C. Seferis
    • The Korean Journal of Rheology
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 1999
  • Viscoelastic characteristics of cured phenolic resin/carbon fiber composite materials were investigated through glass transition and degradation reaction processes in the high temperature region up to $400^{\circ}C$. A typical glass transition of the cross-linked thermoset polymer was followed by irreversible degradation reactions, which were exhibited by the increasing storage modulus and loss modulus peak. A degradation master curve was constructed by using the vertical and horizontal shift factors, both of which complied well with the Arrhenius equation in light of the kinetic expression of degradation rate constants. Using an analogy to the Havriliak-Negami equation in dielectric relaxation phenomena, a viscoelastic modeling methodology was developed to characterize the frequency- and temperature-dependent complex moduli of the degrading thermoset polymer composite systems. The temperature-dependent relaxation time of the degrading composites was determined in a continuous fashion and showed a minimum relaxation time between the glass transition and degradation reaction regions. The capability of the developed modeling methodology was demonstrated by describing the complex behavior of the viscoelastic complex moduli of reacting phenolic resin composite systems.

  • PDF

Rheological Properties of Antiphlamine-S® Lotion (안티푸라민-에스® 로션의 레올로지 특성 연구)

  • Kuk, Hoa-Youn;Song, Ki-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.185-199
    • /
    • 2009
  • Using a strain-controlled rheometer [Advanced Rheometric Expansion System (ARES)], the steady shear flow properties and the dynamic viscoelastic properties of $Antiphlamine-S^{(R)}$ lotion have been measured at $20^{\circ}C$ (storage temperature) and $37^{\circ}C$ (body temperature). In this article, the temperature dependence of the linear viscoelastic behavior was firstly reported from the experimental data obtained from a temperature-sweep test. The steady shear flow behavior was secondly reported and then the effect of shear rate on this behavior was discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters. The angular frequency dependence of the linear viscoelastic behavior was nextly explained and quantitatively predicted using a fractional derivative model. Finally, the strain amplitude dependence of the dynamic viscoelastic behavior was discussed in full to elucidate a nonlinear rheological behavior in large amplitude oscillatory shear flow fields. Main findings obtained from this study can be summarized as follows : (1) The linear viscoelastic behavior is almostly independent of temperature over a temperature range of $15{\sim}40^{circ}C$. (2) The steady shear viscosity is sharply decreased as an increase in shear rate, demonstrating a pronounced Non-Newtonian shear-thinning flow behavior. (3) The shear stress tends to approach a limiting constant value as a decrease in shear rate, exhibiting an existence of a yield stress. (4) The Herschel-Bulkley, Mizrahi-Berk and Heinz-Casson models are all applicable and have an equivalent validity to quantitatively describe the steady shear flow behavior of $Antiphlamine-S^{(R)}$ lotion whereas both the Bingham and Casson models do not give a good applicability. (5) In small amplitude oscillatory shear flow fields, the storage modulus is always greater than the loss modulus over an entire range of angular frequencies tested and both moduli show a slight dependence on angular frequency. This means that the linear viscoelastic behavior of $Antiphlamine-S^{(R)}$ lotion is dominated by an elastic nature rather than a viscous feature and that a gel-like structure is present in this system. (6) In large amplitude oscillatory shear flow fields, the storage modulus shows a nonlinear strain-thinning behavior at strain amplitude range larger than 10 % while the loss modulus exhibits a weak strain-overshoot behavior up to a strain amplitude of 50 % beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (7) At sufficiently large strain amplitude range (${\gamma}_0$>100 %), the loss modulus is found to be greater than the storage modulus, indicating that a viscous property becomes superior to an elastic character in large shear deformations.

Steady and Dynamic Shear Rheological Properties of Buckwheat Starch-galactomannan Mixtures

  • Choi, Dong-Won;Chang, Yoon-Hyuk
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.3
    • /
    • pp.192-196
    • /
    • 2012
  • This study investigated the effects of galacomannans (guar gum, tara gum, and locust bean gum) on the rheological properties of buckwheat starch pastes under steady and dynamic shear conditions. The power law and Casson models were applied to describe the flow behavior of the buckwheat starch and galactomannan mixtures. The values of the apparent viscosity (${\eta}_{a,100}$), consistency index (K), and yield stress (${\sigma}_{oc}$) for buckwheat starch-galactomannan mixtures were significantly greater than those for the control, indicating that there was a high synergism of the starch with galactomannans. The magnitudes of storage modulus (G') and loss modulus (G") for the starch-galactomannan mixtures increased with increasing frequency (${\omega}$). The dynamic moduli (G', G"), and complex viscosity (${\eta}^*$) for the buckwheat starch-galactomannan mixtures were significantly higher than those for the control.

Advances in measuring linear viscoelastic properties using novel deformation geometries and Fourier transform techniques

  • See, Howard
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.2
    • /
    • pp.67-81
    • /
    • 2001
  • The development of new techniques for the dynamic measurement of linear viscoelastic properties is an active area of rheometry, and this paper surveys some novel deformation geometries which have been recently reported e.g. oscillating probe-type devices which are imbedded in or placed on the surface of the sample. Small amplitude band-limited pseudorandom noise is used for the displacement signal, with Fourier analysis of the complex waveform of the resistance force yielding the frequency dependent viscoelastic material functions (e.g. storage and loss moduli G", G"). Theoretical calculations of the fundamental equations relating force to displacement and instrument geometry, were carried out with the aid of the correspondence principle of linear viscoelasticity. The rapidity of the tests and flexibility in terms of sample preparation and stiffness mean that this basic technique should find many applications in rheometry. Three examples of oscillatory tests are presented in detail squeeze flow, imbedded needle and concentric sliding cylinder geometries.eometries.

  • PDF