• 제목/요약/키워드: stomatal

Search Result 422, Processing Time 0.027 seconds

Photosynthetic Rates of 'Campbell Early' Organic Grape as Affected by Degree of Leaf Spot Disease Caused by Pseudocercospora vitis (포도갈색무늬병 발병수준이 '켐벨얼리' 유기포도의 광합성률에 미치는 영향)

  • Ryu, Young-Hyun;Bae, Su-Gon;Yeon, Il-Kwon;Kim, Kwang-Sup;Park, Sang-Jo;Park, Jun-Hong;Park, Jong-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.773-786
    • /
    • 2016
  • Grape cultivar "Campbell Early" account for 70% of table grape in Korea and Leaf Spot Disease caused by Pseudocercospora vitis is one of a major disease in greenhouse and field grown area during late summer season in both of organic and conventional grape farm. Leaf spot disease can cause lowing of sugar content in fruit and vine growth and very difficult to control especially in organic field. Photosynthesis ability and chemical components are compared between leaf spot disease infected leaves with degree of necrotic area. With increase of disease necrotic area, $CO_2$ differential value, water use efficiency and $CO_2$ assimilation and respiration ratio are decreased proportionally and on the other hand, stomatal conductance value is not affected by disease necrotic area. Chlorophyll contents are also decreased by 50% in heavily infected leaves and imply decrease of chlorophyll contents is a major source of photosynthesis ability decline. With increase of disease necrotic area in leaves, total nitrogen and phosphate contents are decreased and on the other side, total carbon, potassium, calcium and magnesium contents are increased. From this research, we can infer that not only chemical control program is important in control of leaf spot disease but also fertilizing program is significant especially in organic agronomical control of fungal disease in grape cultivar "Campbell Early".

Effect of High Concentrations of Sodium or Chloride Salts in Soil on the Growth of and Mineral Uptake by Tomatoes (토양에의 고농도 Na 및 Cl 염류가 토마토의 생육 및 무기성분 흡수에 미치는 영향)

  • 강경희;권기범;최영하;김회태;이한철
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.121-126
    • /
    • 2002
  • This study was conducted to investigate the effect of high concentration of sodium salts and chlorides in soil on the growth of tomato and the uptake of minerals. The growth inhibition rates of plant height and dry weight were different depending on salts, but they were not related to the electric conductivities (EC) and acidities (pH) in the soil solution. The orders of growth inhibition were Cl, SO$_4$, CO$_3$, PO$_4$>NO$_3$ in the sodium salts series, and Na, K, Mg, NH$_4$>Ca in the chlorides. The growth inhibition rates of the sodium salts series tended to be larger than those of the chloride series. Yield was lower 30%~10% in the sodium salt and chloride series than in the control. Chlorophyll content, photosynthetic rate and stomatal conductance were lower in the sodium salts and chloride series than in the control. Mineral concentration was lower in sodium salts and chlorides than in control. The nitrate absorption was inhibited in all salts except for NaNO$_3$ and NH$_4$Cl, and specially in NaCl and Na$_2$SO$_4$ treatments of the sodium salts and in KCl treatment of chloride series. K concentration was reduced NaCl and Na$_2$SO$_4$ treatments compared with the other salts. In the sodium salt series, calcium and magnesium concentration were decreased antagonistically when sodium concentration was increased.

Effete of Ozone Uptake Rate on Photosynthesis and Antioxidant Activity in the Leaves of Betula Species (자작나무류 잎의 오존흡입량이 광합성 및 항산화효소 활성에 미치는 영향)

  • 이재천;한심희;장석성;조경진;김용율
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.2
    • /
    • pp.72-79
    • /
    • 2002
  • This study was conducted to compare the physiological and biochemical responses of four Betula species in response to ozone, and to find out the relationship between ozone uptake rate and photosynthesis or antioxidant activity. One-year-old seedlings of four Betula sp, B. costata, B. davurica, B. platyphylla var, japonica, and B. ermani, exposed to 100 pub ozone concentration for 8h day$^{-1}$ for 5 weeks in fumigation chamber. Ozone uptake rate, photosynthesis, SOD and GR activity were measured in the leaves of four species once a week. Cumulative ozone uptake rate was largest in the loaves of B. costata(53.8 mmol m$^{-2}$ ), smallest in the leaves of B. davurica(35.5 mmol m$^{-2}$ ). Photosynthesis of four Betula sp. exposed to ozone reduced relative to control, but the photosynthetic responses with changing stomatal conductance were different among species. Ozone exposure increased SOD activities of four species at the early exposing period, but after a critical point SOD activity decreased gradually. GR activity of B. costata was similar to the change of SOD activity, but the others showed the different patterns from B. costata. In conclusion, decreasing both SOD and GR activity at the critical point, B. costata may be sensitive species in response to ozone. In contrast, the others may be resistant species, which gradually increase GR activity following ozone exposure. GR activity was not always in accord with the change of SOD activity against ozone uptake, and the different responses between species were supposed to be affected by the cumulative ozone uptake.

Response of Rice Growth under $CO_2$ Enrichment ($CO_2$ 농도 증가에 따른 벼의 생육 반응)

  • Kim Young-Guk;Shin Jin-Chul;Choi Min-Gyu;Koo Bon-Cheul;Kim Seok-Dong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.3
    • /
    • pp.179-185
    • /
    • 2005
  • The effects of $CO_2$ enrichment on growth of rice (Oryza sativa L.) were examined. The plants were grown in growth chambers with a 12-h photoperiod and a day/night temperature of $28/21^{\circ}C$ of the seedling stage and $30/23^{\circ}C$ after the panicle initiation stage. The plants were exposed to two elevated $CO_2$ of 500, 700 ppm and ambient levels (350 ppm). At early growth stage of three varieties (IIpumbyeo, Chucheongbyeo, Hwaseongbyeo), the elevated $CO_2$ increased plant height, tiller, leaf area and dry weight. The photosynthetic rate was decreased at 24 days after treatment (DAT) compared to 11 DAT. The elevated $CO_2$ increased plant height and dry weight at panicle initiation stage (PIS) and heading stage (HS) of three varieties (IIpumbyeo, Chucheongbyeo, Hwaseongbyeo). The photosynthetic rate, stomatal conductance, evapotranspiration rate were decreased at the long days of treatment than that of short days. At entire stages, the elevated $CO_2$ increased the water use efficiency of rice plant because evapotranspiration rate was lowered at the elevated $CO_2$ than ambient levels.

Effect of Water Stress at Different Growth Stages on the Growth and Yield of the Transplanted Rice Plants (벼의 생육기별 수분결핍장애가 생육 및 수량에 미치는 영향)

  • 남상용;권용웅;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.2
    • /
    • pp.31-41
    • /
    • 1986
  • Knowledge of the degree of yield reduction due to water stress at different crop growth stages in rice production is important for rational scheduling of irrigation during periods of insufficient water supply. Previous studies to determine the degree of yield reduction duo to water stress suffered from interruptions by rain during experiment. Also the findings did rot relate the degree of water stress to the soil water potential and water deficit status of rice plants. In this study, two years experiments were conducted using the high yielding rice varieties, an Indica x Japonica (Nampoong) and a Japonica variety(Choochung). These were grown in 1/200$^{\circ}$ plastic pots placed under a rainfall autosensing, sliding clear plastic roof facility to control rainfall interruptions. The results obtained were as follows. 1.The two varieties differed in the growth stage most sensitive to water stress as well as the degree of yield reductions. When rice plants were stressed to the leaf rolling score 4 and soil water potential of about - 20 bar at major crop growth stages which included heading, booting, non-effective tillering, panicle initiation and early tillering stages, the yield reductions in the Indica x Japonica variety were 58%, 34%, 27%, 22%, and 21%, respectively, whereas in the Japonica vairety they were 23%, 36%, 1%, 13% and 22%, respectively. This result show that the recommended drainage during non-effective tillering is valid only for the Japonica variety. Sufficient irrigation at booting, heading and early tillering stages are necessary for both varieties. 2.The two varieties showed visible wilting symptoms when the soil water potential dropped to about - 3.0 bar. The Japonica variety showed more leaf rolling than the Indica X Japonica. However, it had a higher retention of leaf water content and greater stomatal diffusive resistance. When the soil water potential dropped, the Japonica variety showed leaf rolling score (LRS) 1 at 0 soil-5. 0 bar and LRS 2 at 0 soil -6.0 bar while the Indica X Japonica showed LRS 1 at 0 soil - 5.5 bar and LRS 2at 0 Soil - 9.0 bar. The stomatal diffusive resistance was maximum at the second top leaf blade in both varieties at intermediate water stress of 0 soil - 4.5 bar. 3.The number of days that was required for the soil water potential to drop to-3. 0 bar and to - 20.0 bar after drainage of irrigation water from the 20cm deep silty clay loam soil in the pots were 6 and 13 days, respectively for booting stage, and 7 and 11 days, respectively for heading stage, 9 and 12 days, respectively for panicle initiation stage, and 12 and 19 days, respectively for early tillering stage. 4.Water stress during the early tillering stage recorded the longest delay in beading time, the largest reduction in panicle numbers and a substantial yield decrease of 20%. This calls for better water management to ensure the availability of water at this stage, particularly during drought periods. In addition, a reexamination of the conventional inter-drainage practice during the non-effective tillering stage is necessary for the high yielding Indica X Japonica varieties.

  • PDF

Seasonal Change in the CO2 Fixation Rate and Water-Use Efficiency of Broad-leaved Tree Species on Jeju Island (제주지역 주요 활엽수의 대기 중 CO2 흡수율과 수분이용효율의 계절적 변화)

  • Oh, Soonja;Kim, Hyoun-Chol;Kang, Hee-Suk;Shin, Chang-Hoon;Koh, Seok Chan
    • Journal of Environmental Science International
    • /
    • v.29 no.2
    • /
    • pp.123-132
    • /
    • 2020
  • Seasonal changes in the CO2 fixation rate and water-use efficiency in the leaves of six evergreen and two deciduous broad-leaved tree species on Jeju Island, Korea, were measured using a portable photosynthesis analyzer, to identify which species are most efficient in taking up CO2 from the air. The CO2 fixation rate was high in the deciduous species in spring and summer and decreased in fall, whereas it was high in the evergreen species in summer and fall and decreased in winter. The rate remained high in the deciduous tree Prunus yedoensis from spring to fall (> 7.1 μmol CO2/m2/s) and in two evergreen trees, Castanopsis cuspidata var. sieboldii and Cinnamomum camphora, in summer and fall (7.0 9.9 μmol CO2/㎡/s). Therefore, these tree species fix atmospheric CO2 effectively. The water-use efficiency was higher in evergreen species than in deciduous species regardless of the season. Exceptionally, it was high in the deciduous species Zelkova serrata in spring and summer (> 100 μmol CO2/mol H2O), suggesting that Z. serrata is a useful tree for dry conditions due to its tolerance of water stress. The regressions of the CO2 fixation rate versus the evaporation rate and stomatal conductance were linear and non-linear, respectively. This suggests that the stomatal activity of leaves plays an important part in CO2 fixation of plants. In conclusion, C. cuspidata var. sieboldii, C. camphora, and P. yedoensis should be planted along roads or in urban spaces for the greening of cities and mitigation of CO2 concentrations in the air.

Effect of ionic Salt Strength on the Growth and Photosynthetic Rate of Pepper Plug Seedlings (무기 이온의 농도가 고추 플러그묘의 생육과 광합성에 미치는 영향)

  • Ahn, Chong-Kil;Son, Beung-Gu;Kang, Jum-Soon;Lee, Yong-Jae;Park, In-Soo;Choi, Young-Whan
    • Journal of Bio-Environment Control
    • /
    • v.12 no.2
    • /
    • pp.68-71
    • /
    • 2003
  • Experiments were conducted to investigate optimal ionic salt strength in nutrient solution for small plug seedlings of ‘Nokgwang’ and ‘Kwari’ green pepper. Plant height increased with increasing ionic salt strength. total leaf area was 72% greater in ‘Nokgwang’ and 18% greater in ‘Kwari’with 2.0 ionic salt strength than that with 1.0 strength. Dry weight per plant tended to increase at higher ionic salt strengths in ‘Kwari’, but to decrease in ‘Nokgwang’ Chlorophyll content increased with increasing ionic salt strength in both cultivars. Photosynthetic rate, stomatal conductance, and transpiration rate were higher for plants fertilized with 1.5 strength than other strengths in both cultivars. Photosynthetic rate peaked at 8.74 $\mu$mol$.$m$^{-2}$ s$^{-1}$ in ‘Nokgwang’ and 5.70 $\mu$mol$.$m$^{-2}$ s$^{-1}$ in‘Kwari’with 1.5 ionic salt strength.

Induction of A Chromosome-doubled Persimmon (Diospyros kaki Thunb.) by in vitro Colchicine Treatment (기내 콜히친 처리에 의한 염색체 배가 감 식물체 유기)

  • Ma, Kyeong-Bok;Cho, Kwang-Sik;Jung, Hae-Won;Seo, Ho-Jin;Kang, Sam-Seok
    • Korean Journal of Plant Resources
    • /
    • v.31 no.5
    • /
    • pp.515-521
    • /
    • 2018
  • This was carried out to develop a chromosome-doubled (12x) persimmon that will be used as a crossing parent to select seedless persimmon cultivars with the change of the consumption trend recently. To obtain a chromosome-doubled (12x) persimmon, colchicine was applied at the meristem of seedlings in vitro derived from cross among hexaploid persimmon (Diopyros kaki Thunb.). These were treated with 0.03%, 0.05% and 0.1% colchicine respectively for doubling chromosome, and it was most effective at the concentration of 0.05% colchicine. After colchicine treatment, we conducted tests to elucidate conditions for inducing shoot and root development. As the result, the shoots grew best when cultivated at 1/2MS media plus 10 and $30{\mu}M$ zeatin respectively, and the roots grew best when cultivated at 1/2MS media after dipping for 5 seconds at 10 mM NAA+5% DMSO. We also compared seedlings that have chromosome (6x) do not doubled and crossing parents (6x) and chromosome-doubled seedlings (12x). As the result, these chromosome-doubled seedlings (12x) showed lower stomatal density and larger stomatal size.

Response of Growth and photosynthesis to NaCl stress in Soybean(Glysine max L.) Seedlings (NaCl stress에 의한 몇가지 콩 품종들의 생육과 광합성 반응)

  • Cho, Jin-Woong;Kim, Choong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.166-170
    • /
    • 2000
  • This study was conducted in to elucidate the changes of growth characteristics and photosynthesis in three soybean (Glycine max L. cv. Danwonkong, Hwangkeumkong and Kwangankong) 30 day old seedlings to 100mM NaCl concentration containing 1/2 Hoagland's nutrient solution in sand culture. The main stem height and number of main stem node were decreased. thus, leaf area and dry matter were decreased with 100mM NaCl. Growth reduction was less little in Hwangkeumkong than other cultivars. The stem growth rate was affected less than other parts as root or leaf, by NaCl treatment. The specific leaf area (SLA), shoot : root ratio and leaf : root ratio decreased with NaCl solution except for those of Hwangkeumkong. There is no general tendency in leaf thickness by leaf position of three cultivars. The chlorophyll content (SPAD) of the primary and 2nd leaf slightly decreased under NaCl solution but rapidly increased in non-NaCl solution at 15 days after treatments. The photosynthesis, stomatal conductance and transpiration of 2nd leaf positions reduced by NaCl and there were a sigificant correlation between photosynthesis and stomatal conductance or transpiration.

  • PDF

Gas Exchanges and Dehydration in Different Intensities of Conditioning in Tifton 85 Bermudagrass: Nutritional Value during Hay Storage

  • Pasqualotto, M.;Neres, M.A.;Guimaraes, V.F.;Klein, J.;Inagaki, A.M.;Ducati, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.807-815
    • /
    • 2015
  • The present study aimed at evaluating the intensity of Tifton 85 conditioning using a mower conditioner with free-swinging flail fingers and storage times on dehydration curve, fungi presence, nutritional value and in vitro digestibility of Tifton 85 bermudagrass hay dry matter (DM). The dehydration curve was determined in the whole plant for ten times until the baling. The zero time corresponded to the plant before cutting, which occurred at 11:00 and the other collections were carried out at 8:00, 10:00, 14:00, and 16:00. The experimental design was randomised blocks with two intensities of conditioning (high and low) and ten sampling times, with five replications. The high and low intensities related to adjusting the deflector plate of the free iron fingers (8 and 18 cm). In order to determine gas exchanges during Tifton 85 bermudagrass dehydration, there were evaluations of mature leaves, which were placed in the upper middle third of each branch before the cutting, at every hour for 4 hours. A portable gas analyser was used by an infrared IRGA (6400xt). The analysed variables were photosynthesis (A), stomatal conductance (gs), internal $CO_2$ concentration (Ci), transpiration (T), water use efficiency (WUE), and intrinsic water use efficiency (WUEi). In the second part of this study, the nutritional value of Tifton 85 hay was evaluated, so randomised blocks were designed in a split plot through time, with two treatments placed in the following plots: high and low intensity of cutting and five different time points as subplots: cutting (additional treatment), baling and after 30, 60, and 90 days of storage. Subsequently, fungi that were in green plants as well as hay were determined and samples were collected from the grass at the cutting period, during baling, and after 30, 60, and 90 days of storage. It was observed that Tifton 85 bermudagrass dehydration occurred within 49 hours, so this was considered the best time for drying hay. Gas exchanges were more intense before cutting, although after cutting they decreased until ceasing within 4 hours. The lowest values of acid detergent insoluble nitrogen were obtained with low conditioning intensity after 30 days of storage, 64.8 g/kg DM. The in vitro dry matter of Tifton 85 bermudagrass did not differ among the storage times or the conditioning intensities. There was no fungi present in the samples collected during the storage period up to 90 days after dehydration, with less than 30 colony forming units found on plate counting. The use of mower conditioners in different intensities of injury did not speed up the dehydration time of Tifton 85.