• Title/Summary/Keyword: stoichiometric ratio

Search Result 279, Processing Time 0.039 seconds

Kinetics and mechanism of chromate reduction by biotite and pyrite (흑운모 및 황철석에 의한 6가 크롬의 환원 반응속도와 반응기작)

  • 전철민;김재곤;문희수
    • Economic and Environmental Geology
    • /
    • v.36 no.1
    • /
    • pp.39-48
    • /
    • 2003
  • The removal of chromate from aqueous solution using finely ground pyrite and biotite was investigated by batch experiments and the kinetics and the mechanism of chromate reduction were discussed. The chromate reduction by pyrite was about hundred times faster than that by biotite and was also faster at pH 3 than at pH 4. When pyrite was used, more than 90% of initial chromate was reduced within four hours at pH 4 and within 40 min. at pH 3. However, more than 400 hours was taken for the reduction of 90% of initial chromate by biotite. The results indicate that the rate of chromate reduction was strongly depending on the amount of Fe(II) in the minerals and on the dissolution rate of Fe(II) from the minerals. The reduction of chromate at pH 4 resulted in the precipitation of (Cr, Fe)(OH))$_3$$_{ (s)}$, which is believed to have limited the concentrations of dissolved Cr(III) and Fe(III) to less than expected values. When biotite was used, amounts of decreased Fe(II) and reduced Cr(Ⅵ) did not show stoichiometric relationship, which implying there was not only chromate reduction by ferrous ions in the acidic solution but also heterogeneous reduction of ferric ions by the structural ferrous iron in biotite. However, the results from a series of the experiments using Pyrite showed that concentrations of the decreased Fe(II) and the reduced Cr(Ⅵ) were close to the stoichiometric ratio of 3:1. It was because the oxidation of pyrite rapidly created ferrous ions even in oxygenated solutions and the chromate reduction by the ferrous ions was significantly faster than ferrous ion oxygenation.

UV/H2O2 Advanced Oxidation of Photo Processing Chemicals in a UV-free Reflecting Reactor (사진현상폐수의 UV-자유반사 반응조에서의 UV/H2O2 고급산화처리)

  • Choi, Kyung-Ae;Kim, Young-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.241-249
    • /
    • 2000
  • In this study, UV-catalyzed $H_2O_2$ oxidation and $H_2O_2$ oxidation to remove contaminants from photo processing chemicals were investigated at various conditions. Photo processing chemicals contains high concentrations of organic compounds and has very low biodegradability. Hydrogen peroxide is subjected to gradual decomposition as metastable substance. In the process, short-lived and highly reactive hydroxyl radicals are formed. The decomposition can be significantly accelerated by use of appropriate catalyst, such as ultraviolet radiation. The experiments were conducted in a UV-free reflecting reactor in batch and a high-pressure mercury lamp was used as UV source. Mixing, cooling and ventilation of the reactor were operated during experiments. In $UV/H_2O_2$ oxidation and $H_2O_2$ oxidation, the removal efficiencies of $COD_{Cr}$, TOC and chromaticity increased with the increase of $H_2O_2$ dosage and were higher in the controlled pH condition of 3 than in original pH condition of 8. In $UV/H_2O_2$ oxidation under the optimum condition of pH 8 and 1.3 stoichiometric $H_2O_2$ dosage, the removal efficiencies of $COD_{Cr}$, TOC and chromaticity were 47.5%, 75.0% and 91.5% respectively and $BOD/COD_{Cr}$ ratio was significantly increased from 0.04 to 0.21.

  • PDF

Biological Pump in the East Sea Estimated by a Box Model (상자 모형으로 추정한 동해의 생물 펌프)

  • Kim, Jae-Yeon;Kang, Dong-Jin;Kim, Eung;Cho, Jin-Hyung;Lee, Chang-Rae;Kim, Kyung-Ryul;Lee, Tong-Sup
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.295-306
    • /
    • 2003
  • Recently efforts are underway to analyze the impacts of anthropogenic $CO_2$ on the global environments and the amount of oceanic uptake increase. The East Sea is now viewed as a miniature ocean because its circulation pattern is similar to the ocean conveyer belt. The biological pump of the East Sea is a vital component to understand the carbon cycle quantitatively. In this paper, the biological pump is estimated utilizing the stoichiometric ratio between carbon and phosphorus. A simple phosphate budget model is constructed based on the seawater and dissolved oxygen box model that can simulate the recent structural change in deep water circulation of the East Sea. A model run from you 1952 to 2040 shows the steadily intensifying biological pump. Currently it exports about 0.016 Pg C yr$^{-1}$ , which corresponds to 35% of the carbon introduced into the seawater by the air-sea exchange. An increased oxygen supply to the central water mass as a result of from the transition in the ventilation system might enhance the remineralization of sinking biogenic particles. This should strengthen the upward nutrient flux into the surface layer. Consequently, the biological sequestration of anthropogenic carbon is expected to increase with time. The estimated biological uptake of the anthropogenic carbon in the East Sea since the Industrial Revolution is estimated as 0.025 Pg C.

Treatment Characteristics of Trichloroethylene(TCE) by Oxidation and Reduction with Nanoscale Zero-valent Iron (나노영가철의 산화·환원에 의한 트리클로로에틸렌 처리특성)

  • Park, Young-Bae;Jung, Yong-Jun;Choi, Jeong-Hak;Moon, Boung-Hyun
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.903-910
    • /
    • 2014
  • This study examined the treatment characteristics of hard-to-degrade pollutants such as TCE which are found in organic solvent and cleaning wastewater by nZVI that have excellent oxidation and reduction characteristics. In addition, this study tried to find out the degradation characteristics of TCE by Fenton-like process, in which $H_2O_2$ is dosed additionally. In this study, different ratios of nZVI and $H_2O_2$, such as 1.0 mM : 0.5 mM, 1.0 mM : 1.0 mM, and 1.0 mM : 2.0 mM were used. When 1.0 mM of nZVI was dosed with 1.0 mM of $H_2O_2$, the removal efficiency of TOC was the highest and the first order rate constant was also the highest. When 1mM of nZVI was dosed with 0.5 mM of $H_2O_2$, the first order rate constant and removal efficiency were the lowest. The size of first order rate constant and removal efficiency was in the order of nZVI 1.0 mM : $H_2O_2$ 1.0 mM > nZVI 1.0 mM : $H_2O_2$ 2.0 mM > nZVI 1.0 mM : $H_2O_2$ 0.5 mM > $H_2O_2$ 1.0 mM > nZVI 1.0 mM. It is estimated that when 1.0 mM of nZVI is dosed with 1.0 mM of $H_2O_2$, $Fe^{2+}$ ion generated by nZVI and $H_2O_2$ react in the stoichiometric molar ratio of 1:1, thus the first order rate constant and removal efficiency are the highest. And when 1.0 mM of nZVI is dosed with 2.0 mM of $H_2O_2$, excessive $H_2O_2$ work as a scavenger of OH radicals and excessive $H_2O_2$ reduce $Fe^{3+}$ into $Fe^{2+}$. As for the removal efficiency of TOC in TCE by simultaneous dose and sequential dose of nZVI and $H_2O_2$, sequential dose showed higher first order reaction rate and removal efficiency than simultaneous dose. It is estimated that when nZVI is dosed 30 minutes in advance, pre-treatment occurs and nanoscale $Fe^0$ is oxidized to $Fe^{2+}$ and TCE is pre-reduced and becomes easier to degrade. When $H_2O_2$ is dosed at this time, OH radicals are generated and degrade TCE actively.

Complexation of Omeprazole with Meglumine and its Stability (오메프라졸과 메글루민의 복합체 형성과 안정성)

  • Lee, Gye-Ju;Kim, Sung-Wook;Do, Ki-Chan;Park, Chong-Bum;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.4
    • /
    • pp.253-263
    • /
    • 1997
  • To investigate the interaction of omeprazole (OMP) and meglumine (MEG), a complex was prepared by freeze-drying method in ammoniacal aqueous medium at room temperature and subjected to IR, DSC, and 1H NMR analysis. In addition, the stability of the complex was tested by accelerated stability analysis, and the dissolution rate of both powder and enteric coated was determined pellet by paddle method. The results are as follows; i) IR, DSC, and $^{1}H$ NMR studies indicate the formation of inclusion complex between OMP and MEG probably by electrostatic forces as $[OMP]\;[MEGH]^+$ form in a stoichiometric ratio (1:1) of OMP : MEG. ii) The dissolution rate of enteric coated OMP-MEG complex pellet in simulated enteric fluid was 90.6% in 10 minutes, which may satisfy the requirement for the regulation of dissolution. iii) OMP-MEG complex were decomposed according to pseudo 1st order kinetics: while the decomposition of OMP showed a rate constant $(k_{25^{\circ}C})$ of $5.13{\times}10^{-4}{\cdot}\;day^{-1}$, a half-life$(t_{1/2})$ of 1,350 days, a shelf-life$(T_{90%})$ 205 days and an activation energy of 23.53 kcal/mole. OMP-MEG complex inhibited a rate $(k_{25})$ of $2.92{\times}10^{-4}{\cdot}\;day^{-1}$, a half-life$(t_{1/2})$ of 2,373 days, a shelf-life $(T_{90%})$ of 306 days and an activation energy of 20.18 kcal/mole. iv) OMP was stabilized markedly by the formation of OMP-MEG complex between OMP and MEG, and the humidity increased the stability of OMP-MEG complex by decreasing the decomposition rate$(k_{50^{\circ}C})$ from $1.27{\times}10^{-2}{\cdot}\;day^{-1}$ at 31% R.H. to $2.54{\times}10^{-2}{\cdot}\;day^{-1}$ at 90% R.H.

  • PDF

Hexagonal Boron Nitride Monolayer Growth without Aminoborane Nanoparticles by Chemical Vapor Deposition

  • Han, Jaehyu;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.409-409
    • /
    • 2014
  • Recently hexagonal boron nitride (h-BN), III-V compound of boron and nitrogen with strong covalent $sp^2$ bond, is a 2 dimensional insulating material with a large direct band gap up to 6 eV. Its outstanding properties such as strong mechanical strength, high thermal conductivity, and chemical stability have been reported to be similar or superior to graphene. Because of these excellent properties, h-BN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Ultra flat and charge impurity-free surface of h-BN is also an ideal substrate to maintain electrical properties of 2 dimensional materials such as graphene. To synthesize a single or a few layered h-BN, chemical vapor deposition method (CVD) has been widely used by using an ammonia borane as a precursor. Ammonia borane decomposes into hydrogen (gas), monomeric aminoborane (solid), and borazine (gas) that is used for growing h-BN layer. However, very active monomeric aminoborane forms polymeric aminoborane nanoparticles that are white non-crystalline BN nanoparticles of 50~100 nm in diameter. The presence of these BN nanoparticles following the synthesis has been hampering the implementation of h-BN to various applications. Therefore, it is quite important to grow a clean and high quality h-BN layer free of BN particles without having to introduce complicated process steps. We have demonstrated a synthesis of a high quality h-BN monolayer free of BN nanoparticles in wafer-scale size of $7{\times}7cm^2$ by using CVD method incorporating a simple filter system. The measured results have shown that the filter can effectively remove BN nanoparticles by restricting them from reaching to Cu substrate. Layer thickness of about 0.48 nm measured by AFM, a Raman shift of $1,371{\sim}1,372cm^{-1}$ measured by micro Raman spectroscopy along with optical band gap of 6.06 eV estimated from UV-Vis Spectrophotometer confirm the formation of monolayer h-BN. Quantitative XPS analysis for the ratio of boron and nitrogen and CS-corrected HRTEM image of atomic resolution hexagonal lattices indicate a high quality stoichiometric h-BN. The method presented here provides a promising technique for the synthesis of high quality monolayer h-BN free of BN nanoparticles.

  • PDF

Electrochemical Properties of Lithium Secondary Battery and the Synthesis of Spherical Li4Ti5O12 Powder by Using TiCl4 As a Starting Material (TiCl4를 출발원료로한 구형 Li4Ti5O12 분말합성 및 리튬이차 전지특성)

  • Choi, Byung-Hyun;Ji, Mi-Jung;Kwon, Yong-Jin;Kim, Eun-Kyung;Nahm, Sahn
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.669-675
    • /
    • 2010
  • One of the greatest challenges for our society is providing powerful electrochemical energy conversion and storage devices. Rechargeable lithium-ion batteries and fuel cells are among the most promising candidates in terms of energy and power density. As the starting material, $TiCl_4{\cdot}YCl_3$ solution and dispersing agent (HCP) were mixed and synthesized using ammonia as the precipitation agent, in order to prepare the nano size Y doped spherical $TiO_2$ precursor. Then, the $Li_4Ti_5O_{12}$ was synthesized using solid state reaction method through the stoichiometric mixture of Y doped spherical $TiO_2$ precursor and LiOH. The Ti mole increased the concentration of the spherical particle size due to the addition of HPC with a similar particle size distribution in a well in which $Li_4Ti_5O_{12}$ spherical particles could be obtained. The optimal synthesis conditions and the molar ratio of the Ti 0.05 mol reaction at $50^{\circ}C$ for 30 minutes and at $850^{\circ}C$ for 6 hours heat treatment time were optimized. $Li_4Ti_5O_{12}$ was prepared by the above conditions as a working electrode after generating the Coin cell; then, electrochemical properties were evaluated when the voltage range of 1.5V was flat, the initial capacity was 141 mAh/g, and cycle retention rate was 86%; also, redox reactions between 1.5 and 1.7V, which arose from the insertion and deintercalation of 0.005 mole of Y doping is not a case of doping because the C-rate characteristics were significantly better.

Growth of Hexagonal Boron Nitride Thin Films on Silicon Using a Single Source Precursors

  • Boo, Jin-Hyo;Lee, Soon-Bo;Casten Rohr;Wilson Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.120-120
    • /
    • 1998
  • Boron nitride (BN) films have attracted a growing interest for a variety of t technological applications due to their excellent characteristics, namely hardness, c chemical inertness, and dielectrical behavior, etc. There are two crystalline phases 1551; of BN that are analogous to phases of carbon. Hexagonal boron nitride (h-BN) has a a layered s$\sigma$ucture which is spz-bonded structure similar to that of graphite, and is t the stable ordered phase at ambient conditions. Cubic boron nitride (c-BN) has a z zinc blende structure with sp3-bonding like as diamond, 따ld is the metastable phase a at ambient conditions. Among of their prototypes, especially 삼Ie c-BN is an i interesting material because it has almost the same hardness and thermal c conductivity as di없nond. C Conventionally, significant progress has been made in the experimental t techniques for synthesizing BN films using various of the physical vapor deposition 밍ld chemical vapor deposition. But, the major disadvantage of c-BN films is that t they are much more difficult to synthesize than h-BN films due to its narrow s stability phase region, high compression stress, and problem of nitrogen source c control. Recent studies of the metalorganic chemical vapor deposition (MOCVD) of I III - V compound have established that a molecular level understanding of the d deposition process is mandatory in controlling the selectivity parameters. This led t to the concept of using a single source organometallic precursor, having the c constituent elements in stoichiometric ratio, for MOCVD growth of 삼Ie required b binary compound. I In this study, therefore, we have been carried out the growth of h-BN thin f films on silicon substrates using a single source precursors. Polycrystalline h-BN t thin films were deposited on silicon in the temperature range of $\alpha$)() - 900 $^{\circ}$C from t the organometallic precursors of Boron-Triethylamine complex, (CZHs)3N:BRJ, and T Tris(dimethylamino)Borane, [CH3}zNhB, by supersonic molecular jet and remote p plasma assisted MOCVD. Hydrogen was used as carrier gas, and additional nitrogen w was supplied by either aDlIDonia through a nozzle, or nitrogen via a remote plasma. T The as-grown films were characterized by Fourier transform infrared spectroscopy, x x-ray pthotoelectron spectroscopy, Auger electron spectroscopy, x-ray diffraction, t transmission electron diffraction, optical transmission, and atomic force microscopy.roscopy.

  • PDF

Removal of H2S by Selective Catalytic Oxidation II. Selective Oxidation of H2S on TiO2/SiO2 Catalysts (선택적 촉매 산화 반응에 의한 황화 수소의 제거 II. TiO2/SiO2 촉매 상에서 황화 수소의 선택적 산화 반응)

  • Chun, S.W.;Park, D.W.;Woo, H.C.;Hong, S.S.;Chung, J.S.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.645-652
    • /
    • 1996
  • Selective catalytic oxidation of $H_2S$ to elemental sulfur using $TiO_2/SiO_2$ catalysts was investigated in this study. The reaction test with pure $TiS_2$ and $Ti(SO_4)_2$ and cyclic temperature operation revealed that $TiO_2$ had a good resistance to sulfation and sulfidation, which are known as the main cause of catalytic deactivation in sulfur recovery process. With the increase of $TiO_2$ loading amount in $TiO_2/SiO_2$ catalysts, the conversion of $H_2S$ increased and the selectivity of elemental sulfur was very slightly decreased. As the ratio of $O_2/H_2S$ increased, the selectivity to elemental sulfur was drastically decreased. In the presence of 10 vol.% water vapor to a stoichiometric mixture of $H_2S$ and $O_2$($H_2S$= 5 vol.% O=2.5 vol.% ), both activity and selectivity of 10 wt.% $TiO_2/SiO_2$ catalyst are decreased, but it still showed more than 80% of sulfur yield.

  • PDF

Crystal Structure of the Three-dimensional Metal Complex Host in Clusion Compound [$Cd(pn)Ni(CN)_4{\cdot}0.5(CH_3COCH_3{\cdot}H_2O$) (3차원 금속 착제를 Host로 하는 포접 화합물 [$Cd(pn)Ni(CN)_4{\cdot}0.5(CH_3COCH_3{\cdot}H_2O$)의 결정구조)

  • Park, Gi Min;Lee, Uk;Am, Bon Jin Mu
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.6
    • /
    • pp.435-441
    • /
    • 1994
  • The inclusion compound constituted with three-dimensional metal-complex $Cd(pn)Ni(CN)_4$ has been prepared and determined the crystal structure from single crystal X-ray diffraction data. Crystal data are as follows: $[Cd(pn)Ni(CN)_4]{\cdot}0.5(CH_3COCH_3{\cdot}H_2O)$, Fw = 387.35, Orthorhombic, $Pn2_1a$, a = 13.950(3) $\AA$, b = 26.713(7) $\AA$, c = 7.628(1) $\AA$, V = 2843(1) $\AA^3$, Z = 4, $D_x=1.81 gcm^{-3}$, $\mu(MoK{\alpha})$ = $28.153 cm^{-1}$, T = 297K, final R = 0.0418 for 3521($F_0>3{\sigma}(F_0)$). The metal-complex host provides tunnel cavity, similar to thiourea inclusion compounds, accommodated guest molecules $(=CH_3COCH_3\;and\;$H_2O).$ The stoichiometric host: guest ratio is 0.5. The title inclusion compound reveals another evidence for the host-selectivity, that is, the branched aliphatic guest molecule leads T-type host structure.

  • PDF