This thesis examines the relationship between the trading volume and price return in the korean stock Index Futures until June 2005. First, the volume of KOSPI200 futures doesn't play a primary role with the clear explanation of return model. Second, an unexpected volume shocks are negatively associated with the return in case of the KOSPI200 futures, but it is a meaningless relation in the KOSDAQ50 futures. In the case of open interest, it's difficult to find any mean in a both futures. Third, The changes in the trading volumes by foreign investors are positively associated with the return and the volatility, but individuals and domestic commercial investors are negatively associated with the return. This empirical result seems that foreign investors are initiatively trading the korean stock index futures, individuals and domestic commercial investors follow the lead made by foreign investors.
The basis of cyber trading has been sufficiently developed with innovative advancement of Internet Technology and the tendency of stock market investment has changed from long-term investment, which estimates the value of enterprises, to short-term investment, which focuses on getting short-term stock trading margin. Hence, this research shows a Short-term Stock Price Forecasting System on Learning Agent System using DTA(Decision Tree Algorithm) ; it collects real-time information of interest and favorite issues using Agent Technology through the Internet, and forms a decision tree, and creates a Rule-Base Database. Through this procedure the Short-term Stock Price Forecasting System provides customers with the prediction of the fluctuation of stock prices for each issue in near future and a point of sales and purchases. A Human being has the limitation of analytic ability and so through taking a look into and analyzing the fluctuation of stock prices, the Agent enables man to trace out the external factors of fluctuation of stock market on real-time. Therefore, we can check out the ups and downs of several issues at the same time and figure out the relationship and interrelation among many issues using the Agent. The SPFA (Stock Price Forecasting System) has such basic four phases as Data Collection, Data Processing, Learning, and Forecasting and Feedback.
This paper deals with the application of the genetic algorithm to the technical trading rule of the stock market. MACD(Moving Average Convergence & Divergence) and the Stochastic techniques are widely used technical trading rules in the financial markets. But, it is necessary to determine the parameters of these trading rules in order to use the trading rules. We use the genetic algorithm to obtain the appropriate values of the parameters. We use the daily KOSPI data of eight years during January 1995 and October 2002 as the experimental data. We divide the total experimental period into learning period and testing period. The genetic algorithm determines the values of parameters for the trading rules during the teaming period and we test the performance of the algorithm during the testing period with the determined parameters. Also, we compare the return of the genetic algorithm with the returns of buy-hold strategy and risk-free asset. From the experiment, we can see that the genetic algorithm outperforms the other strategies. Thus, we can conclude that genetic algorithm can be used successfully to the technical trading rule.
본 논문은 주식 매매 시스템을 위한 강화 학습 구조를 제시한다. 매매 시스템에 사용되는 매개변수들은 Q-학습 알고리즘에 의하여 최적화되고, 인공 신경망이 값의 근사치를 구하기 위하여 활용된다 이 구조에서는 서로 유기적으로 협업하는 다중 에이전트를 이용하여 전역적인 추세 예측과 부분적인 매매 전략을 통합하여 개선된 매매 성능을 가능하게 한다. 에이전트들은 서로 통신하여 훈련 에피소드와 학습된 정책을 서로 공유하는데, 이 때 전통적인 Q-학습의 모든 골격을 유지한다. 실험을 통하여, KOSPI 200에서는 제안된 구조에 기반 한 매매 시스템을 통하여 시장 평균 수익률을 상회하며 동시에 상당한 이익을 창출하는 것을 확인하였다. 게다가 위험 관리의 측면에서도 본 시스템은 교사 학습(supervised teaming)에 의하여 훈련된 시스템에 비하여 더 뛰어난 성능을 보여주었다.
주식 시장에서 안정적으로 높은 수익을 얻기 위하여 많은 트레이딩 알고리즘에 대한 연구들이 이루어졌다. 트레이딩 알고리즘들이 미국 주식시장의 거래량에서 차지하는 비율은 80 프로가 넘을 정도로 많이 사용된다. 많은 연구에도 불구하고 항상 좋은 성능을 나타내는 트레이딩 알고리즘은 존재하지 않는다. 즉, 과거에 좋은 성능을 보이는 알고리즘이 미래에도 좋은 성능을 보인다는 보장이 없다. 그 이유는 주가에 영향을 주는 요인은 매우 많고, 미래의 불확실성도 존재하기 때문이다. 따라서 본 논문에서는 알고리즘들의 수익률에 대한 과거 기록을 바탕으로 미래의 수익률을 잘 예측하고 수익률도 높을 것으로 추정되는 알고리즘을 선택하는 TimeGAN을 활용한 모델을 제안한다. LSTM기법은 미래 시계열 데이터의 예측이 결정론적임에 반하여 TimeGAN은 확률적이다. TimeGAN의 확률적인 예측의 이점은 미래에 대한 불확실성을 반영하여 줄 수 있다는 점이다. 실험 결과로써, 본 논문에서 제안한 방법은 적은 변동성으로 높은 수익률을 달성하고, 여러 다수의 비교 알고리즘에 비해 우수한 결과를 보인다.
We study optimal trading strategy of a market maker with stock inventory. Following Avellaneda and Stoikov (2008), we assume the stock price follows a normal distribution. However, we take a constant expected rate of the stock return and assume that the stock volatility is an inverse function of the stock price level. We show that the optimal bid-ask spread of the market maker is wider for a higher expected rate of stock returns.
The Journal of Asian Finance, Economics and Business
/
제9권5호
/
pp.409-419
/
2022
This paper examines the post-IPO price volatility in the first trading days after the IPO of SOEs that carry out equitization, on a sample of 76 IPOs on the Hanoi Stock Exchange (Vietnam) in the period 2013-2018. Oversubscription rate, firm size, issuance size, internal equity ownership, and listing delay are all factors that influence IPO price volatility in a primitive stock market. The results showed that the average initial market-adjusted return for the first three trading days was -11.95%; -9.58% and -7.29% and the level of price volatility is related to the rate of oversubscription and company size. Issuance price, issuance size, internal equity holdings, and listing delay do not seem to contribute significantly to post-IPO share prices. Individual investors based their valuation on information released during and after the IPO. In general, the number of IPOs that yield positive and negative returns in the first trading days is about the same, indicating that the two phenomena of undervaluation and overvaluation still occur in the process of valuing shares of Vietnamese SOEs for IPOs.
Purpose - Prior theories predict a negative correlation between stock liquidity and dividend payout propensity. We test this hypothesis by examining the sample Korean retail firms. Research design, data, and methodology - We construct four different types of stock liquidity measures and investigate how these stock liquidity variables affect dividend payout propensity by employing the logit regression model. The retail firms listed in the KOSPI and KOSDAQ markets are analyzed from 1990 to 2015. Results - Our estimation results support the liquidity hypothesis if we adopt the stock turnover rate as the stock liquidity measure, particularly for the retail firms listed in the KOSPI markets and for non-conglomerate firms. Yet, our estimation results adopting the illiquidity measure of Amihud (2002), the proportion of non-trading day, and the volume of trading do not support the liquidity hypothesis. Conclusions - Our findings provide mixed results for the validity of stock liquidity hypothesis, which enriches the existing literature. In terms of turnover rate, the stock liquidity hypothesis holds robustly. Yet, we are not able to find any empirical evidence supporting the hypothesis if we use the other three measures of stock liquidity.
본 연구에서는 한국거래소 내 유가증권시장의 1999년부터 2004년까지의 일중 거래자료에 기초한 프로그램매매종목과 차익거래종목, 그리고 비차익거래종목의 스프레드와 프로그램매매포함횟수의 변화를 분석하여 한국유가증권시장의 프로그램매매중단장치인 사이드카가 정보비대칭을 해소하는 역할을 하는지를 검증하였다. 본 연구의 주요결과를 요약하면 다음과 같다. 첫째, 사이드카 발동 이후 프로그램매매종목의 스프레드가 감소하는 것으로 나타나 사이드카가 정보비대칭을 부분적으로 완화시키는 효과가 있는 것으로 나타났다. 둘째, 사이드카 발동 이후 프로그램매매종목에 나타나는 정보비대칭의 해소효과는 매수프로그램매매종목에 국한하여 나타나는 결과이다. 셋째, 차익거래와 비차익거래에 미치는 효과를 분석한 결과는 사이드카의 발동이 차익거래뿐만 아니라 비차익거래 종목의 스프레드를 줄여 정보비대칭을 해소하는 효과를 가짐을 보여준다. 넷째, 프로그램매매종목에서와 마찬가지로 차익거래와 비차익거래 종목에 나타나나는 정보비대칭해소효과는 매수차익거래와 매수비차익거래에 국한하여 나타난다. 마지막으로 사이드카 발동 전후 각 표본의 프로그램매매 포함횟수의 변화를 분석한 결과에 의하면, 각 표본종목이 프로그램매매에 포함된 횟수는 사이드카 발동 이후에 대부분 증가하는 것으로 나타나, 사이드카 발동에 따른 매매중단기간 동안 정보비대칭이 충분히 해소되지 못하며 사이드카 발동을 가져온 가격의 급등락에 관련된 뉴스가 사건이후에도 지속적으로 영향을 미침을 보여준다.
국내증시는 1992년 1월 자본시장이 개방되고, 외국 자본의 비율이 꾸준히 증가하여 2022년 현재 국내 시장의 30%를 차지하고 있다. 따라서 국내 증시는 국내의 이슈보다는 외국의 이슈에 더 많은 영향을 받고 있다. 외국자본의 매매 동향은 환율변동과 유사한 흐름을 보이고 있다. 환율이 외국자본의 매매에 미치는 영향을 피어슨 상관관계를 이용하여 분석하고, 환율변동에 따른 투자전략을 마련하고 거시경제지표 중 하나인 환율의 변동을 미리 예측하여 선제적으로 주식투자에 활용할 수 있다면 높은 수익률을 기대할 것으로 보인다. 따라서 본 연구에서는 환율과 외국자본의 매매 패턴을 비교 분석하여 국내증시 전반에 영향을 미치는 중요한 요인인 환율에 따른 외국인 변수를 예측하여 매수와 매매의 타이밍을 판단하여 투자에 도움을 주기 위해 본 연구를 진행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.