• Title/Summary/Keyword: stock price data

Search Result 397, Processing Time 0.047 seconds

An estimation of implied volatility for KOSPI200 option (KOSPI200 옵션의 내재변동성 추정)

  • Choi, Jieun;Lee, Jang Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.513-522
    • /
    • 2014
  • Using the assumption that the price of a stock follows a geometric Brownian motion with constant volatility, Black and Scholes (BS) derived a formula that gives the price of a European call option on the stock as a function of the stock price, the strike price, the time to maturity, the risk-free interest rate, the dividend rate paid by the stock, and the volatility of the stock's return. However, implied volatilities of BS method tend to depend on the stock prices and the time to maturity in practice. To address this shortcoming, we estimate the implied volatility function as a function of the strike priceand the time to maturity for data consisting of the daily prices for KOSPI200 call options from January 2007 to May 2009 using support vector regression (SVR), the multiple additive regression trees (MART) algorithm, and ordinary least squaress (OLS) regression. In conclusion, use of MART or SVR in the BS pricing model reduced both RMSE and MAE, compared to the OLS-based BS pricing model.

A Comparative Analysis of the Prediction Models for the Direction of Stock Price Using the Online Company Reviews (기업 리뷰 정보를 활용한 주가 방향 예측 모델 비교 분석)

  • Lim, Yongtaek;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.165-171
    • /
    • 2020
  • Most of the stock price prediction research using text mining uses news and SNS data. However, there is a weakness that it is difficult to get honest and vivid information about companies from them. This paper deals with the problem of the prediction for the direction of stock price by doing text mining the online company reviews of internal staff indicating employee satisfaction. The comparative analysis of the prediction models for the direction of stock price showed the prediction model, which adds internal employee reviews, has better performance than those that did not. This paper presents the convergence study using natural language processing in financial engineering. In the field of stock price prediction, This paper pursued a new methodology that used employee satisfaction. In practice, it is expected to provide useful information in the field of forecasting stock price direction.

Daily Stock Price Forecasting Using Deep Neural Network Model (심층 신경회로망 모델을 이용한 일별 주가 예측)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.39-44
    • /
    • 2018
  • The application of deep neural networks to finance has received a great deal of attention from researchers because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from large sets of data, which is required to describe nonlinear input-output relations of financial time series. The paper presents a new deep neural network model where single layered autoencoder and 4 layered neural network are serially coupled for stock price forecasting. The autoencoder extracts deep features, which are fed into multi-layer neural networks to predict the next day's stock closing prices. The proposed deep neural network is progressively learned layer by layer ahead of the final learning of the total network. The proposed model to predict daily close prices of KOrea composite Stock Price Index (KOSPI) is built, and its performance is demonstrated.

The Effects of Fundamental Variables on Stock Returns - Evidence from Panel Data (기본적 변수가 주식수익률에 미치는 영향 - 패널자료로부터의 근거)

  • Lee, Hae-Young;Kam, Hyung-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1035-1041
    • /
    • 2012
  • This paper examines the effects of fundamental variables on stock returns. Therefore, the major purpose of this study is to identify fundamental variables having a systematical effect on the stock return. The paper uses panel data analysis. We find that the results of regressions say that firm size, book-to-market ratio(B/M), earning-to-price ratio(E/P), cash flow-to-price ratio(C/P) can explain the differences in average returns across stocks.

Stock Price Prediction Using Sentiment Analysis: from "Stock Discussion Room" in Naver (SNS감성 분석을 이용한 주가 방향성 예측: 네이버 주식토론방 데이터를 이용하여)

  • Kim, Myeongjin;Ryu, Jihye;Cha, Dongho;Sim, Min Kyu
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.4
    • /
    • pp.61-75
    • /
    • 2020
  • The scope of data for understanding or predicting stock prices has been continuously widened from traditional structured format data to unstructured data. This study investigates whether commentary data collected from SNS may affect future stock prices. From "Stock Discussion Room" in Naver, we collect 20 stocks' commentary data for six months, and test whether this data have prediction power with respect to one-hour ahead price direction and price range. Deep neural network such as LSTM and CNN methods are employed to model the predictive relationship. Among the 20 stocks, we find that future price direction can be predicted with higher than the accuracy of 50% in 13 stocks. Also, the future price range can be predicted with higher than the accuracy of 50% in 16 stocks. This study validate that the investors' sentiment reflected in SNS community such as Naver's "Stock Discussion Room" may affect the demand and supply of stocks, thus driving the stock prices.

Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach (카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.123-138
    • /
    • 2017
  • Since the stock market is driven by the expectation of traders, studies have been conducted to predict stock price movements through analysis of various sources of text data. In order to predict stock price movements, research has been conducted not only on the relationship between text data and fluctuations in stock prices, but also on the trading stocks based on news articles and social media responses. Studies that predict the movements of stock prices have also applied classification algorithms with constructing term-document matrix in the same way as other text mining approaches. Because the document contains a lot of words, it is better to select words that contribute more for building a term-document matrix. Based on the frequency of words, words that show too little frequency or importance are removed. It also selects words according to their contribution by measuring the degree to which a word contributes to correctly classifying a document. The basic idea of constructing a term-document matrix was to collect all the documents to be analyzed and to select and use the words that have an influence on the classification. In this study, we analyze the documents for each individual item and select the words that are irrelevant for all categories as neutral words. We extract the words around the selected neutral word and use it to generate the term-document matrix. The neutral word itself starts with the idea that the stock movement is less related to the existence of the neutral words, and that the surrounding words of the neutral word are more likely to affect the stock price movements. And apply it to the algorithm that classifies the stock price fluctuations with the generated term-document matrix. In this study, we firstly removed stop words and selected neutral words for each stock. And we used a method to exclude words that are included in news articles for other stocks among the selected words. Through the online news portal, we collected four months of news articles on the top 10 market cap stocks. We split the news articles into 3 month news data as training data and apply the remaining one month news articles to the model to predict the stock price movements of the next day. We used SVM, Boosting and Random Forest for building models and predicting the movements of stock prices. The stock market opened for four months (2016/02/01 ~ 2016/05/31) for a total of 80 days, using the initial 60 days as a training set and the remaining 20 days as a test set. The proposed word - based algorithm in this study showed better classification performance than the word selection method based on sparsity. This study predicted stock price volatility by collecting and analyzing news articles of the top 10 stocks in market cap. We used the term - document matrix based classification model to estimate the stock price fluctuations and compared the performance of the existing sparse - based word extraction method and the suggested method of removing words from the term - document matrix. The suggested method differs from the word extraction method in that it uses not only the news articles for the corresponding stock but also other news items to determine the words to extract. In other words, it removed not only the words that appeared in all the increase and decrease but also the words that appeared common in the news for other stocks. When the prediction accuracy was compared, the suggested method showed higher accuracy. The limitation of this study is that the stock price prediction was set up to classify the rise and fall, and the experiment was conducted only for the top ten stocks. The 10 stocks used in the experiment do not represent the entire stock market. In addition, it is difficult to show the investment performance because stock price fluctuation and profit rate may be different. Therefore, it is necessary to study the research using more stocks and the yield prediction through trading simulation.

The Effect of Related Party Transactions on Crash Risk (특수관계자 거래가 주가급락에 미치는 영향)

  • Ryu, Hae-Young
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.6
    • /
    • pp.49-55
    • /
    • 2018
  • Purpose - This paper examines the effect of related party transactions on crash firm-specific stock price crash risk. Ownership of a typical Korean conglomerate is concentrated in a single family. In those entities, management and board positions are often filled by family members. Therefore, a dominant shareholder can benefit from related party transactions. In Korea, firms have to report related party transactions in financial statement footnotes. However, those are not disclosed in detail. The more related party transactions are the greater information risk. Thus, companies with related party transactions are likely to experience stock price crashes. Research design, data, and methodology - 2,598 firm-year observations are used for the main analysis. Those samples are from TS2000 database from 2009 to 2013, and the database covers KOSPI-listed firms in Korea. The proxy for related party transactions (RTP) is calculated by dividing total transactions to the related-party by total sales. A dummy variable is used as a dependent variable (CRASH) in the regression model. Logistic regression is used to explain the relationship between related party transactions and crash risk. Then, the sample was separated into two groups; tunneling firms and propping firms. The relation between related party transactions and crash risk variances with features of the transaction were investigated. Results - Using a sample of KOSPI-listed firms in TS2000 database for the period of 2009-2013, I find that stock price crash risk increases as the trade volume of related-party transactions increases. Specifically, I find that the coefficient of RPT is significantly positive, supporting the prediction. In addition, this relationship is strong and robust in tunneling firms. Conclusions - The results report that firms with related party transactions are more likely to experience stock price crashes. The results mean that related party transactions increase the possibility of future stock price crashes by enlarging information asymmetry between controlling shareholders and minority shareholders. In case of tunneling, it could be seen that related party transactions are positively associated with stock crash risk. The result implies that the characteristic of the transaction influences crash risk. This study is related to a literature that investigates the effect of related party transactions on the stock market.

The Effect of Business Strategy on Stock Price Crash Risk

  • RYU, Haeyoung
    • The Journal of Industrial Distribution & Business
    • /
    • v.12 no.3
    • /
    • pp.43-49
    • /
    • 2021
  • Purpose: This study attempted to examine the risk of stock price plunge according to the firm's management strategy. Prospector firms value innovation and have high uncertainties due to rapid growth. There is a possibility of lowering the quality of financial reporting in order to meet market expectations while withstanding the uncertainty of the results. In addition, managers of prospector firms enter into compensation contracts based on stock prices, thus creating an incentive to withhold negative information disclosure to the market. Prospector firms' information opacity and delays in disclosure of negative information are likely to cause a sharp decline in share prices in the future. Research design, data and methodology: This study performed logistic analysis of KOSPI listed firms from 2014 to 2017. The independent variable is the strategic index, and is calculated by considering the six characteristics (R&D investment, efficiency, growth potential, marketing, organizational stability, capital intensity) of the firm. The higher the total score, the more it is a firm that takes a prospector strategy, and the lower the total score, the more it is a firm that pursues a defender strategy. In the case of the dependent variable, a value of 1 was assigned when there was a week that experienced a sharp decline in stock prices, and 0 when it was not. Results: It was found that the more firms adopting the prospector strategy, the higher the risk of a sharp decline in the stock price. This is interpreted as the reason that firms pursuing a prospector strategy do not disclose negative information by being conscious of market investors while carrying out venture projects. In other words, compensation contracts based on uncertainty in the outcome of prospector firms and stock prices increase the opacity of information and are likely to cause a sharp decline in share prices. Conclusions: This study's analysis of the impact of management strategy on the stock price plunge suggests that investors need to consider the strategy that firms take in allocating resources. Firms need to be cautious in examining the impact of a particular strategy on the capital markets and implementing that strategy.

Dynamic Spillover for the Economic Risk in Korea on Global Uncertainty

  • Jeon, Ji-Hong
    • Journal of Distribution Science
    • /
    • v.17 no.1
    • /
    • pp.11-19
    • /
    • 2019
  • Purpose - We document the impact of economic policy uncertainty (EPU) in the US and China on the dynamic spillover effect of macroeconomics such as stock price, housing price in Korea. Research design, data, and methodology - We use the nine variables to analyze the effect which produces a result among the EPU indexes of the US and China on economic variables which is the consumer price index (CPI), housing purchase price composite index, housing lease price, the stock price index in banking industry, construction industry and distribution industry, and composite leading indicator from January 1995 to December 2016 with the Vector Error Correction Model. Result - The US EPU index has significantly a negative relation on the CPI, housing purchase price index, housing lease price index, the stock price index in banking industry, construction industry, and distribution industry in Korea. Conclusions - We find the dynamic effect of the EPU indexes in the US and China on the macroeconomics returns in Korea. This study has an empirical evidence that the economy market in Korea is influenced by the EPU index of the US rather than it of China. The higher EPU, the more risky the economy of in Korea.

A Performance Analysis by Adjusting Learning Methods in Stock Price Prediction Model Using LSTM (LSTM을 이용한 주가예측 모델의 학습방법에 따른 성능분석)

  • Jung, Jongjin;Kim, Jiyeon
    • Journal of Digital Convergence
    • /
    • v.18 no.11
    • /
    • pp.259-266
    • /
    • 2020
  • Many developments have been steadily carried out by researchers with applying knowledge-based expert system or machine learning algorithms to the financial field. In particular, it is now common to perform knowledge based system trading in using stock prices. Recently, deep learning technologies have been applied to real fields of stock trading marketplace as GPU performance and large scaled data have been supported enough. Especially, LSTM has been tried to apply to stock price prediction because of its compatibility for time series data. In this paper, we implement stock price prediction using LSTM. In modeling of LSTM, we propose a fitness combination of model parameters and activation functions for best performance. Specifically, we propose suitable selection methods of initializers of weights and bias, regularizers to avoid over-fitting, activation functions and optimization methods. We also compare model performances according to the different selections of the above important modeling considering factors on the real-world stock price data of global major companies. Finally, our experimental work brings a fitness method of applying LSTM model to stock price prediction.