Journal of the Korean Data and Information Science Society
/
v.25
no.3
/
pp.513-522
/
2014
Using the assumption that the price of a stock follows a geometric Brownian motion with constant volatility, Black and Scholes (BS) derived a formula that gives the price of a European call option on the stock as a function of the stock price, the strike price, the time to maturity, the risk-free interest rate, the dividend rate paid by the stock, and the volatility of the stock's return. However, implied volatilities of BS method tend to depend on the stock prices and the time to maturity in practice. To address this shortcoming, we estimate the implied volatility function as a function of the strike priceand the time to maturity for data consisting of the daily prices for KOSPI200 call options from January 2007 to May 2009 using support vector regression (SVR), the multiple additive regression trees (MART) algorithm, and ordinary least squaress (OLS) regression. In conclusion, use of MART or SVR in the BS pricing model reduced both RMSE and MAE, compared to the OLS-based BS pricing model.
Most of the stock price prediction research using text mining uses news and SNS data. However, there is a weakness that it is difficult to get honest and vivid information about companies from them. This paper deals with the problem of the prediction for the direction of stock price by doing text mining the online company reviews of internal staff indicating employee satisfaction. The comparative analysis of the prediction models for the direction of stock price showed the prediction model, which adds internal employee reviews, has better performance than those that did not. This paper presents the convergence study using natural language processing in financial engineering. In the field of stock price prediction, This paper pursued a new methodology that used employee satisfaction. In practice, it is expected to provide useful information in the field of forecasting stock price direction.
The application of deep neural networks to finance has received a great deal of attention from researchers because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from large sets of data, which is required to describe nonlinear input-output relations of financial time series. The paper presents a new deep neural network model where single layered autoencoder and 4 layered neural network are serially coupled for stock price forecasting. The autoencoder extracts deep features, which are fed into multi-layer neural networks to predict the next day's stock closing prices. The proposed deep neural network is progressively learned layer by layer ahead of the final learning of the total network. The proposed model to predict daily close prices of KOrea composite Stock Price Index (KOSPI) is built, and its performance is demonstrated.
Journal of the Korea Academia-Industrial cooperation Society
/
v.13
no.3
/
pp.1035-1041
/
2012
This paper examines the effects of fundamental variables on stock returns. Therefore, the major purpose of this study is to identify fundamental variables having a systematical effect on the stock return. The paper uses panel data analysis. We find that the results of regressions say that firm size, book-to-market ratio(B/M), earning-to-price ratio(E/P), cash flow-to-price ratio(C/P) can explain the differences in average returns across stocks.
Kim, Myeongjin;Ryu, Jihye;Cha, Dongho;Sim, Min Kyu
The Journal of Society for e-Business Studies
/
v.25
no.4
/
pp.61-75
/
2020
The scope of data for understanding or predicting stock prices has been continuously widened from traditional structured format data to unstructured data. This study investigates whether commentary data collected from SNS may affect future stock prices. From "Stock Discussion Room" in Naver, we collect 20 stocks' commentary data for six months, and test whether this data have prediction power with respect to one-hour ahead price direction and price range. Deep neural network such as LSTM and CNN methods are employed to model the predictive relationship. Among the 20 stocks, we find that future price direction can be predicted with higher than the accuracy of 50% in 13 stocks. Also, the future price range can be predicted with higher than the accuracy of 50% in 16 stocks. This study validate that the investors' sentiment reflected in SNS community such as Naver's "Stock Discussion Room" may affect the demand and supply of stocks, thus driving the stock prices.
Since the stock market is driven by the expectation of traders, studies have been conducted to predict stock price movements through analysis of various sources of text data. In order to predict stock price movements, research has been conducted not only on the relationship between text data and fluctuations in stock prices, but also on the trading stocks based on news articles and social media responses. Studies that predict the movements of stock prices have also applied classification algorithms with constructing term-document matrix in the same way as other text mining approaches. Because the document contains a lot of words, it is better to select words that contribute more for building a term-document matrix. Based on the frequency of words, words that show too little frequency or importance are removed. It also selects words according to their contribution by measuring the degree to which a word contributes to correctly classifying a document. The basic idea of constructing a term-document matrix was to collect all the documents to be analyzed and to select and use the words that have an influence on the classification. In this study, we analyze the documents for each individual item and select the words that are irrelevant for all categories as neutral words. We extract the words around the selected neutral word and use it to generate the term-document matrix. The neutral word itself starts with the idea that the stock movement is less related to the existence of the neutral words, and that the surrounding words of the neutral word are more likely to affect the stock price movements. And apply it to the algorithm that classifies the stock price fluctuations with the generated term-document matrix. In this study, we firstly removed stop words and selected neutral words for each stock. And we used a method to exclude words that are included in news articles for other stocks among the selected words. Through the online news portal, we collected four months of news articles on the top 10 market cap stocks. We split the news articles into 3 month news data as training data and apply the remaining one month news articles to the model to predict the stock price movements of the next day. We used SVM, Boosting and Random Forest for building models and predicting the movements of stock prices. The stock market opened for four months (2016/02/01 ~ 2016/05/31) for a total of 80 days, using the initial 60 days as a training set and the remaining 20 days as a test set. The proposed word - based algorithm in this study showed better classification performance than the word selection method based on sparsity. This study predicted stock price volatility by collecting and analyzing news articles of the top 10 stocks in market cap. We used the term - document matrix based classification model to estimate the stock price fluctuations and compared the performance of the existing sparse - based word extraction method and the suggested method of removing words from the term - document matrix. The suggested method differs from the word extraction method in that it uses not only the news articles for the corresponding stock but also other news items to determine the words to extract. In other words, it removed not only the words that appeared in all the increase and decrease but also the words that appeared common in the news for other stocks. When the prediction accuracy was compared, the suggested method showed higher accuracy. The limitation of this study is that the stock price prediction was set up to classify the rise and fall, and the experiment was conducted only for the top ten stocks. The 10 stocks used in the experiment do not represent the entire stock market. In addition, it is difficult to show the investment performance because stock price fluctuation and profit rate may be different. Therefore, it is necessary to study the research using more stocks and the yield prediction through trading simulation.
Purpose - This paper examines the effect of related party transactions on crash firm-specific stock price crash risk. Ownership of a typical Korean conglomerate is concentrated in a single family. In those entities, management and board positions are often filled by family members. Therefore, a dominant shareholder can benefit from related party transactions. In Korea, firms have to report related party transactions in financial statement footnotes. However, those are not disclosed in detail. The more related party transactions are the greater information risk. Thus, companies with related party transactions are likely to experience stock price crashes. Research design, data, and methodology - 2,598 firm-year observations are used for the main analysis. Those samples are from TS2000 database from 2009 to 2013, and the database covers KOSPI-listed firms in Korea. The proxy for related party transactions (RTP) is calculated by dividing total transactions to the related-party by total sales. A dummy variable is used as a dependent variable (CRASH) in the regression model. Logistic regression is used to explain the relationship between related party transactions and crash risk. Then, the sample was separated into two groups; tunneling firms and propping firms. The relation between related party transactions and crash risk variances with features of the transaction were investigated. Results - Using a sample of KOSPI-listed firms in TS2000 database for the period of 2009-2013, I find that stock price crash risk increases as the trade volume of related-party transactions increases. Specifically, I find that the coefficient of RPT is significantly positive, supporting the prediction. In addition, this relationship is strong and robust in tunneling firms. Conclusions - The results report that firms with related party transactions are more likely to experience stock price crashes. The results mean that related party transactions increase the possibility of future stock price crashes by enlarging information asymmetry between controlling shareholders and minority shareholders. In case of tunneling, it could be seen that related party transactions are positively associated with stock crash risk. The result implies that the characteristic of the transaction influences crash risk. This study is related to a literature that investigates the effect of related party transactions on the stock market.
Purpose: This study attempted to examine the risk of stock price plunge according to the firm's management strategy. Prospector firms value innovation and have high uncertainties due to rapid growth. There is a possibility of lowering the quality of financial reporting in order to meet market expectations while withstanding the uncertainty of the results. In addition, managers of prospector firms enter into compensation contracts based on stock prices, thus creating an incentive to withhold negative information disclosure to the market. Prospector firms' information opacity and delays in disclosure of negative information are likely to cause a sharp decline in share prices in the future. Research design, data and methodology: This study performed logistic analysis of KOSPI listed firms from 2014 to 2017. The independent variable is the strategic index, and is calculated by considering the six characteristics (R&D investment, efficiency, growth potential, marketing, organizational stability, capital intensity) of the firm. The higher the total score, the more it is a firm that takes a prospector strategy, and the lower the total score, the more it is a firm that pursues a defender strategy. In the case of the dependent variable, a value of 1 was assigned when there was a week that experienced a sharp decline in stock prices, and 0 when it was not. Results: It was found that the more firms adopting the prospector strategy, the higher the risk of a sharp decline in the stock price. This is interpreted as the reason that firms pursuing a prospector strategy do not disclose negative information by being conscious of market investors while carrying out venture projects. In other words, compensation contracts based on uncertainty in the outcome of prospector firms and stock prices increase the opacity of information and are likely to cause a sharp decline in share prices. Conclusions: This study's analysis of the impact of management strategy on the stock price plunge suggests that investors need to consider the strategy that firms take in allocating resources. Firms need to be cautious in examining the impact of a particular strategy on the capital markets and implementing that strategy.
Purpose - We document the impact of economic policy uncertainty (EPU) in the US and China on the dynamic spillover effect of macroeconomics such as stock price, housing price in Korea. Research design, data, and methodology - We use the nine variables to analyze the effect which produces a result among the EPU indexes of the US and China on economic variables which is the consumer price index (CPI), housing purchase price composite index, housing lease price, the stock price index in banking industry, construction industry and distribution industry, and composite leading indicator from January 1995 to December 2016 with the Vector Error Correction Model. Result - The US EPU index has significantly a negative relation on the CPI, housing purchase price index, housing lease price index, the stock price index in banking industry, construction industry, and distribution industry in Korea. Conclusions - We find the dynamic effect of the EPU indexes in the US and China on the macroeconomics returns in Korea. This study has an empirical evidence that the economy market in Korea is influenced by the EPU index of the US rather than it of China. The higher EPU, the more risky the economy of in Korea.
Many developments have been steadily carried out by researchers with applying knowledge-based expert system or machine learning algorithms to the financial field. In particular, it is now common to perform knowledge based system trading in using stock prices. Recently, deep learning technologies have been applied to real fields of stock trading marketplace as GPU performance and large scaled data have been supported enough. Especially, LSTM has been tried to apply to stock price prediction because of its compatibility for time series data. In this paper, we implement stock price prediction using LSTM. In modeling of LSTM, we propose a fitness combination of model parameters and activation functions for best performance. Specifically, we propose suitable selection methods of initializers of weights and bias, regularizers to avoid over-fitting, activation functions and optimization methods. We also compare model performances according to the different selections of the above important modeling considering factors on the real-world stock price data of global major companies. Finally, our experimental work brings a fitness method of applying LSTM model to stock price prediction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.