• Title/Summary/Keyword: stock price data

Search Result 397, Processing Time 0.025 seconds

Does the Pandemic Declaration influence the Firm Value of the Untact Firms? (팬데믹 선언이 언택트 기업의 기업가치에 미치는 영향: 투자자 마니아 가설을 중심으로)

  • Park, Su-Kyu;Cho, Jin-Hyung
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.1
    • /
    • pp.247-262
    • /
    • 2022
  • Purpose - The purpose of this study is to examine the impact of the Pandamic Declaration on 'untact firms' listed in KOSPI and KOSDAQ market in order to verify Investor Mania Hypothesis. Design/methodology/approach - This study collected financial data for 44 untact firms in KOSPI and KOSDAQ market. Then, we employed ESM(Event Study Methodology), EGARCH model and DID(Difference-In-Difference) for analysis. Findings - First, in contrast with the benchmarking index, KOSPI 200 which shows a negative (-) abnormal return trend, the untact firms have positive abnormal return trend consistently. Second, after the Pandemic Declaration, the variability of abnormal return for the untact firms is found to be significantly positive. Third, we find that the cumulative abnormal return and volatility of the untact firms significantly increase after the Pandemic Declaration. Research implications or Originality - Based on the Investor Mania Hypothesis, we confirm that the market potential of untact firms after the Pandemic Declaration is observed when compared with the KOSPI 200.

A Case Study of Valuation Considering the Characteristics of E-Commerce Distribution: Focusing on the Coupang IPO

  • Ilhang SHIN;Inkyung YOON;Hansol LEE
    • Journal of Distribution Science
    • /
    • v.21 no.4
    • /
    • pp.91-101
    • /
    • 2023
  • Purpose: Research on the valuation of the e-commerce distribution companies is necessary because the traditional valuation methodology cannot be easily applied. Considering the valuation and initial public offering (IPO) of Coupang, Korea's leading e-commerce company, this study contributes to the literature by examining various valuation methods applicable to corporate valuation in the e-commerce industry and provides their implications. Research design, data and methodology: This case study investigates research, analyst reports, news articles, and magazines to review the valuation methods for companies in the e-commerce industry and analyzes the case of the Coupang IPO. Results: A valuation method that considers growth potential, which is important for companies in the e-commerce industry, is used for IPOs. This led to Coupang's successful IPO on the New York Stock Exchange despite its accumulated losses. However, the continued price decline since listing suggests that Coupang's valuation should have considered more factors. Conclusions: This study provides guidelines for the valuation of companies in the e-commerce industry, which eventually improves the overall industry. Moreover, this study provides directions for improving the valuation methods for e-commerce firms.

A study on the effect of tax evasion controversy on corporate values in internet news portals through big data analysis (빅데이터 분석을 통한 인터넷 뉴스 포털에서의 탈세 논란이 기업 가치에 미치는 영향 연구)

  • Lee, Sang-Min;Park, Myung-Ho;Kim, Byung-Jun;Park, Dae-Keun
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.51-57
    • /
    • 2021
  • If a company's actions to save or avoid taxes are judged to be tax evasion rather than legal tax action by the tax authorities, the company will not only pay tax but also non-tax costs such as damage to corporate image and stock price decline due to a series of tax evasion-related news articles. Therefore, this study measures the frequency of occurrence of tax evasion controversial keywords in internet news portal as a factor to measure the severity of the case, and analyzes the effect of the frequency of occurrence on corporate value. In the Korean stock market, we crawl related articles from internet news portal by using keywords that are controversial for tax evasion targeting top companies based on market capitalization, and generate a time series of the frequency of occurrence of keywords about tax evasion by company and analyze the effect of frequency of appearance on book value versus market capitalization. Through panel regression and impulse response analysis, it is analyzed that the frequency of appearance has a negative effect on the market capitalization and the effect gradually decreases until 12 months. This study examines whether the tax evasion issue affects the corporate value of Korean companies and suggests that it is necessary to take these influences into account when entrepreneurs set up tax-planning schemes.

Conflict of Interests and Analysts' Forecast (이해상충과 애널리스트 예측)

  • Park, Chang-Gyun;Youn, Taehoon
    • KDI Journal of Economic Policy
    • /
    • v.31 no.1
    • /
    • pp.239-276
    • /
    • 2009
  • The paper investigates the possible relationship between earnings prediction by security analysts and special ownership ties that link security companies those analysts belong to and firms under analysis. "Security analysts" are known best for their role as information producers in stock markets where imperfect information is prevalent and transaction costs are high. In such a market, changes in the fundamental value of a company are not spontaneously reflected in the stock price, and the security analysts actively produce and distribute the relevant information crucial for the price mechanism to operate efficiently. Therefore, securing the fairness and accuracy of information they provide is very important for efficiencyof resource allocation as well as protection of investors who are excluded from the special relationship. Evidence of systematic distortion of information by the special tie naturally calls for regulatory intervention, if found. However, one cannot presuppose the existence of distorted information based on the common ownership between the appraiser and the appraisee. Reputation effect is especially cherished by security firms and among analysts as indispensable intangible asset in the industry, and the incentive to maintain good reputation by providing accurate earnings prediction may overweigh the incentive to offer favorable rating or stock recommendation for the firms that are affiliated by common ownership. This study shares the theme of existing literature concerning the effect of conflict of interests on the accuracy of analyst's predictions. This study, however, focuses on the potential conflict of interest situation that may originate from the Korea-specific ownership structure of large conglomerates. Utilizing an extensive database of analysts' reports provided by WiseFn(R) in Korea, we perform empirical analysis of potential relationship between earnings prediction and common ownership. We first analyzed the prediction bias index which tells how optimistic or friendly the analyst's prediction is compared to the realized earnings. It is shown that there exists no statistically significant relationship between the prediction bias and common ownership. This is a rather surprising result since it is observed that the frequency of positive prediction bias is higher with such ownership tie. Next, we analyzed the prediction accuracy index which shows how accurate the analyst's prediction is compared to the realized earnings regardless of its sign. It is also concluded that there is no significant association between the accuracy ofearnings prediction and special relationship. We interpret the results implying that market discipline based on reputation effect is working in Korean stock market in the sense that security companies do not seem to be influenced by an incentive to offer distorted information on affiliated firms. While many of the existing studies confirm the relationship between the ability of the analystand the accuracy of the analyst's prediction, these factors cannot be controlled in the above analysis due to the lack of relevant data. As an indirect way to examine the possibility that such relationship might have distorted the result, we perform an additional but identical analysis based on a sub-sample consisting only of reports by best analysts. The result also confirms the earlier conclusion that the common ownership structure does not affect the accuracy and bias of earnings prediction by the analyst.

  • PDF

Optimization of Support Vector Machines for Financial Forecasting (재무예측을 위한 Support Vector Machine의 최적화)

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.241-254
    • /
    • 2011
  • Financial time-series forecasting is one of the most important issues because it is essential for the risk management of financial institutions. Therefore, researchers have tried to forecast financial time-series using various data mining techniques such as regression, artificial neural networks, decision trees, k-nearest neighbor etc. Recently, support vector machines (SVMs) are popularly applied to this research area because they have advantages that they don't require huge training data and have low possibility of overfitting. However, a user must determine several design factors by heuristics in order to use SVM. For example, the selection of appropriate kernel function and its parameters and proper feature subset selection are major design factors of SVM. Other than these factors, the proper selection of instance subset may also improve the forecasting performance of SVM by eliminating irrelevant and distorting training instances. Nonetheless, there have been few studies that have applied instance selection to SVM, especially in the domain of stock market prediction. Instance selection tries to choose proper instance subsets from original training data. It may be considered as a method of knowledge refinement and it maintains the instance-base. This study proposes the novel instance selection algorithm for SVMs. The proposed technique in this study uses genetic algorithm (GA) to optimize instance selection process with parameter optimization simultaneously. We call the model as ISVM (SVM with Instance selection) in this study. Experiments on stock market data are implemented using ISVM. In this study, the GA searches for optimal or near-optimal values of kernel parameters and relevant instances for SVMs. This study needs two sets of parameters in chromosomes in GA setting : The codes for kernel parameters and for instance selection. For the controlling parameters of the GA search, the population size is set at 50 organisms and the value of the crossover rate is set at 0.7 while the mutation rate is 0.1. As the stopping condition, 50 generations are permitted. The application data used in this study consists of technical indicators and the direction of change in the daily Korea stock price index (KOSPI). The total number of samples is 2218 trading days. We separate the whole data into three subsets as training, test, hold-out data set. The number of data in each subset is 1056, 581, 581 respectively. This study compares ISVM to several comparative models including logistic regression (logit), backpropagation neural networks (ANN), nearest neighbor (1-NN), conventional SVM (SVM) and SVM with the optimized parameters (PSVM). In especial, PSVM uses optimized kernel parameters by the genetic algorithm. The experimental results show that ISVM outperforms 1-NN by 15.32%, ANN by 6.89%, Logit and SVM by 5.34%, and PSVM by 4.82% for the holdout data. For ISVM, only 556 data from 1056 original training data are used to produce the result. In addition, the two-sample test for proportions is used to examine whether ISVM significantly outperforms other comparative models. The results indicate that ISVM outperforms ANN and 1-NN at the 1% statistical significance level. In addition, ISVM performs better than Logit, SVM and PSVM at the 5% statistical significance level.

Analysis of Stock Price Increase and Volatility of Logistics Related Companies (물류관련 기업들의 주가 상승률과 변동성 분석)

  • Choi, Soo-Ho;Choi, Jeong-Il
    • Journal of Digital Convergence
    • /
    • v.15 no.2
    • /
    • pp.135-144
    • /
    • 2017
  • This study is to identify the growth rate and volatility of logistics related firms in the stock market. To do this, we used monthly data for 197 years from June 2000 to October 2016 by selecting KOSPI and Transport & Storage(T&S), KOSDAQ, Transportation(TRANS) index. The purpose of this study is to compare the T&S and TRANS stock index returns with the KOSPI and KOSDAQ index. And we are to judge whether the development potential of the logistics industry and the value of the investment of related companies in the future is high. For this purpose, we will analyze the basic statistics, correlation and growth rate of each index, and compare T&S and TRANS with market returns. Analysis result, for the past 197 months logistics related T&S and TRANS have been higher than market returns. The correlation was highly related to TRANS and T & S in KOSPI, but it was not related to KOSDAQ. TRANS represents high risk and high return, while KOSDAQ represents high risk and low return market. TRANS is considered to be an efficient investment. We expect the future development of logistics related industries and T & S and TRANS to show a high rate of increase compared to the market returns.

Development of an Intelligent Trading System Using Support Vector Machines and Genetic Algorithms (Support Vector Machines와 유전자 알고리즘을 이용한 지능형 트레이딩 시스템 개발)

  • Kim, Sun-Woong;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.1
    • /
    • pp.71-92
    • /
    • 2010
  • As the use of trading systems increases recently, many researchers are interested in developing intelligent trading systems using artificial intelligence techniques. However, most prior studies on trading systems have common limitations. First, they just adopted several technical indicators based on stock indices as independent variables although there are a variety of variables that can be used as independent variables for predicting the market. In addition, most of them focus on developing a model that predicts the direction of the stock market indices rather than one that can generate trading signals for maximizing returns. Thus, in this study, we propose a novel intelligent trading system that mitigates these limitations. It is designed to use both the technical indicators and the other non-price variables on the market. Also, it adopts 'two-threshold mechanism' so that it can transform the outcome of the stock market prediction model based on support vector machines to the trading decision signals like buy, sell or hold. To validate the usefulness of the proposed system, we applied it to the real world data-the KOSPI200 index from May 2004 to December 2009. As a result, we found that the proposed system outperformed other comparative models from the perspective of 'rate of return'.

A Study on Resolving Barriers to Entry into the Resell Market by Exploring and Predicting Price Increases Using the XGBoost Model (XGBoost 모형을 활용한 가격 상승 요인 탐색 및 예측을 통한 리셀 시장 진입 장벽 해소에 관한 연구)

  • Yoon, HyunSeop;Kang, Juyoung
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.155-174
    • /
    • 2021
  • This study noted the emergence of the Resell investment within the fashion market, among emerging investment techniques. Worldwide, the market size is growing rapidly, and currently, there is a craze taking place throughout Korea. Therefore, we would like to use shoe data from StockX, the representative site of Resell, to present basic guidelines to consumers and to break down barriers to entry into the Resell market. Moreover, it showed the current status of the Resell craze, which was based on information from various media outlets, and then presented the current status and research model of the Resell market through prior research. Raw data was collected and analyzed using the XGBoost algorithm and the Prophet model. Analysis showed that the factors that affect the Resell market were identified, and the shoes suitable for the Resell market were also identified. Furthermore, historical data on shoes allowed us to predict future prices, thereby predicting future profitability. Through this study, the market will allow unfamiliar consumers to actively participate in the market with the given information. It also provides a variety of vital information regarding Resell investments, thus. forming a fundamental guideline for the market and further contributing to addressing entry barriers.

An Empirical Study on the Long-Run Performance of Cross-Listings by Multinational Corporations (다국적기업 해외상장의 장기적인 성과에 관한 연구)

  • Kim, Dong-Soon;Park, Sang-An
    • The Korean Journal of Financial Management
    • /
    • v.21 no.2
    • /
    • pp.27-63
    • /
    • 2004
  • Since the 1980s, many multinational corporations have been issuing stocks on foreign stock exchanges, not only to enhance their investor base and liquidity, but also to diversify risks. The phenomenon has also been intensified by the rapid financial globalization and securitization trends. The main purpose of this study is to look into the long-run performance of MNCs' cross-listings of stocks on foreign stock exchanges. We use the event study and cross-sectional regression methods. We obtained some interesting empirical results about the long-run effect of cross-listings. First before the listing data the effect of cross-listing is to increase the underlying stock Vice in the local market. It may be caused by expectation of lower risk and cost of capital. However, after the listing data the stock price has been declining, even if it is not significant. Second, we examine the difference in the long-run cross-listing effect, which may be caused by the listing direction. When listing is made from a less developed market to a more developed market, the effect is better than that in the reverse direction. Furthermore, the effect is worse, when the listing company's home country is the U.S. Third, there is a negative relation between CARs and underlying stock liquidity in the local market, So it implies that a firm, whose underlying stocks are very liquid in the local market should carefully value cross-listing based upon the cost and benefit analysis. Last, but not the least we find that the long-un cross-listing effect is better, when a listing firm's ROE is higher.

  • PDF

An Analysis of the Dynamics between Media Coverage and Stock Market on Digital New Deal Policy: Focusing on Companies Related to the Fourth Industrial Revolution (디지털 뉴딜 정책에 대한 언론 보도량과 주식 시장의 동태적 관계 분석: 4차산업혁명 관련 기업을 중심으로)

  • Sohn, Kwonsang;Kwon, Ohbyung
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.33-53
    • /
    • 2021
  • In the crossroads of social change caused by the spread of the Fourth Industrial Revolution and the prolonged COVID-19, the Korean government announced the Digital New Deal policy on July 14, 2020. The Digital New Deal policy's primary goal is to create new businesses by accelerating digital transformation in the public sector and industries around data, networks, and artificial intelligence technologies. However, in a rapidly changing social environment, information asymmetry of the future benefits of technology can cause differences in the public's ability to analyze the direction and effectiveness of policies, resulting in uncertainty about the practical effects of policies. On the other hand, the media leads the formation of discourse through communicators' role to disseminate government policies to the public and provides knowledge about specific issues through the news. In other words, as the media coverage of a particular policy increases, the issue concentration increases, which also affects public decision-making. Therefore, the purpose of this study is to verify the dynamic relationship between the media coverage and the stock market on the Korean government's digital New Deal policy using Granger causality, impulse response functions, and variance decomposition analysis. To this end, the daily stock turnover ratio, daily price-earnings ratio, and EWMA volatility of digital technology-based companies related to the digital new deal policy among KOSDAQ listed companies were set as variables. As a result, keyword search volume, daily stock turnover ratio, EWMA volatility have a bi-directional Granger causal relationship with media coverage. And an increase in media coverage has a high impact on keyword search volume on digital new deal policies. Also, the impulse response analysis on media coverage showed a sharp drop in EWMA volatility. The influence gradually increased over time and played a role in mitigating stock market volatility. Based on this study's findings, the amount of media coverage of digital new deals policy has a significant dynamic relationship with the stock market.