• Title/Summary/Keyword: stock index futures trading

Search Result 33, Processing Time 0.039 seconds

S & P 500 Stock Index' Futures Trading with Neural Networks (신경망을 이용한 S&P 500 주가지수 선물거래)

  • Park, Jae-Hwa
    • Journal of Intelligence and Information Systems
    • /
    • v.2 no.2
    • /
    • pp.43-54
    • /
    • 1996
  • Financial markets are operating 24 hours a day throughout the world and interrelated in increasingly complex ways. Telecommunications and computer networks tie together markets in the from of electronic entities. Financial practitioners are inundated with an ever larger stream of data, produced by the rise of sophisticated database technologies, on the rising number of market instruments. As conventional analytic techniques reach their limit in recognizing data patterns, financial firms and institutions find neural network techniques to solve this complex task. Neural networks have found an important niche in financial a, pp.ications. We a, pp.y neural networks to Standard and Poor's (S&P) 500 stock index futures trading to predict the futures marker behavior. The results through experiments with a commercial neural, network software do su, pp.rt future use of neural networks in S&P 500 stock index futures trading.

  • PDF

The Existence of Mispriced Futures Contracts in the Korean Financial Market (빅데이터 분석을 통한 보유비용모형에 근거한 주가지수선물의 가격괴리에 대한 분석)

  • Kim, Hyun Kyung;Nam, Seung Oh
    • Journal of Information Technology Applications and Management
    • /
    • v.21 no.4
    • /
    • pp.97-125
    • /
    • 2014
  • This study investigates the relationship between stock index and its associated nearby futures markets based on the cost-of-carry model. The purpose of this study is to explore the existence of mispriced futures contracts, and to test whether traders can earn trading profits in real financial market using the information about the mispriced futures contracts. This study suggests the concordance correlation coefficient to investigate the existence of mispriced futures contracts. The concordance correlation coefficient gives a desirable result for trading profits that results from a comparative analysis among profits from trading at the time to indicate trading opportunities determined by the degree of the difference between the observed market price and the theoretical price of a futures contract. In addition, this study also explains that the concordance correlation coefficient developed from the mean square error (MSE) has a statistically theoretical meaning. In conclusion, this study shows that the concordance correlation coefficient is appropriate for analyzing the relationship between the observed stock index futures market price and the theoretical stock index futures price derived from the cost-of-carry model.

Developing Pairs Trading Rules for Arbitrage Investment Strategy based on the Price Ratios of Stock Index Futures (주가지수 선물의 가격 비율에 기반한 차익거래 투자전략을 위한 페어트레이딩 규칙 개발)

  • Kim, Young-Min;Kim, Jungsu;Lee, Suk-Jun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.202-211
    • /
    • 2014
  • Pairs trading is a type of arbitrage investment strategy that buys an underpriced security and simultaneously sells an overpriced security. Since the 1980s, investors have recognized pairs trading as a promising arbitrage strategy that pursues absolute returns rather than relative profits. Thus, individual and institutional traders, as well as hedge fund traders in the financial markets, have an interest in developing a pairs trading strategy. This study proposes pairs trading rules (PTRs) created from a price ratio between securities (i.e., stock index futures) using rough set analysis. The price ratio involves calculating the closing price of one security and dividing it by the closing price of another security and generating Buy or Sell signals according to whether the ratio is increasing or decreasing. In this empirical study, we generate PTRs through rough set analysis applied to various technical indicators derived from the price ratio between KOSPI 200 and S&P 500 index futures. The proposed trading rules for pairs trading indicate high profits in the futures market.

An Empirical Study on the Volume and Return in the Korean Stock Index Futures Markets by Trader Types (투자주체별 주가지수선물시장의 거래량과 수익률에 관한 연구)

  • Lee, Sang-Jae
    • 한국산학경영학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.107-120
    • /
    • 2006
  • This thesis examines the relationship between the trading volume and price return in the korean stock Index Futures until June 2005. First, the volume of KOSPI200 futures doesn't play a primary role with the clear explanation of return model. Second, an unexpected volume shocks are negatively associated with the return in case of the KOSPI200 futures, but it is a meaningless relation in the KOSDAQ50 futures. In the case of open interest, it's difficult to find any mean in a both futures. Third, The changes in the trading volumes by foreign investors are positively associated with the return and the volatility, but individuals and domestic commercial investors are negatively associated with the return. This empirical result seems that foreign investors are initiatively trading the korean stock index futures, individuals and domestic commercial investors follow the lead made by foreign investors.

  • PDF

Analysis of Trading Performance on Intelligent Trading System for Directional Trading (방향성매매를 위한 지능형 매매시스템의 투자성과분석)

  • Choi, Heung-Sik;Kim, Sun-Woong;Park, Sung-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.187-201
    • /
    • 2011
  • KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.

A Study on Developing a Profitable Intra-day Trading System for KOSPI 200 Index Futures Using the US Stock Market Information Spillover Effect

  • Kim, Sun-Woong;Choi, Heung-Sik;Lee, Byoung-Hwa
    • Journal of Information Technology Applications and Management
    • /
    • v.17 no.3
    • /
    • pp.151-162
    • /
    • 2010
  • Recent developments in financial market liberalization and information technology are accelerating the interdependence of national stock markets. This study explores the information spillover effect of the US stock market on the overnight and daytime returns of the Korean stock market. We develop a profitable intra-day trading strategy based on the information spillover effect. Our study provides several important conclusions. First, an information spillover effect still exists from the overnight US stock market to the current Korean stock market. Second, Korean investors overreact to both good and bad news overnight from the US. Therefore, there are significant price reversals in the KOSPI 200 index futures prices from market open to market close. Third, the overreaction effect is different between weekdays and weekends. Finally, the suggested intra-day trading system based on the documented overreaction hypothesis is profitable.

  • PDF

KOSPI 200 Futures Trading Activities and Stock Market Volatility (KOSPI 200 선물의 거래활동과 현물 주식시장의 변동성)

  • Kim, Min-Ho;Nielsen, James;Oh, Hyun-Tak
    • The Korean Journal of Financial Management
    • /
    • v.20 no.2
    • /
    • pp.235-261
    • /
    • 2003
  • We examine the relationship between the trading activities of Korea Stock Price Index (KOSPI) 200 futures contract and its underlying stock market volatility for about six years from May 1996 when the futures contract was introduced. The trading activities of the futures contracts are proxied by the volume and open interest, which are divided into expected and unexpected portions by using the previous data. The daily, intradilay, and overnight cash volatility is estimated by the GJR-GARCH model. We find a positive contemporaneous relationship between the intradaily stock market volatility and the unexpected futures volume while the relationship between the volatility and expected futures volume is weakly negative or non-existent. We also find that the unexpected futures volume strongly causes intradaily cash volatility. On the other hand, the overnight cash volatility causes the unexpected futures volume. The impulse responses between these variables are all positive. The result implies that during a trading time futures trading tends to increase the cash volatility while the unexpected overnight changes in cash volatility tends to increase the futures trading activities. We, however, find no association between the cash volatility and futures maturities.

  • PDF

The Impact of Index Future Introduction on Spot Market Returns and Trading Volume: Evidence from Ho Chi Minh Stock Exchange

  • NGUYEN, Anh Thi Kim;TRUONG, Loc Dong
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.8
    • /
    • pp.51-59
    • /
    • 2020
  • The objective of this study is to enrich the literature by investigating the impact of introduction of index future trading on spot market returns and trading volume in Vietnam. Data used in this study mainly consist of daily VN30-Index and market trading volume series during the period from February 6th, 2012 to December 31st, 2019. Using OLS, GARCH(1,1) and EGARCH(1,1) models, the empirical findings consistently confirm that the introduction of index future trading has no impact on the spot market returns. In addition, the results of the EGARCH(1,1) model indicate that the leverage effect on the spot market volatility is existence in HOSE. Specifically, bad news has a greater effect on the market volatility than good news of the same size. Moreover, our empirical findings reveal that the introduction of index future contracts has the positive impact on the underlying market trading volume. Specifically, the trading volume of the post-index futures introduction increases by 7.5 percent compared with the pre-index futures introduction. Finally, the results obtained from the Granger causality test for the relationship between the spot market returns and the future trading activity confirm that only uni-directional causality running from the market returns to the future trading activity exists in HOSE.

Developing a Trading System using the Relative Value between KOSPI 200 and S&P 500 Stock Index Futures (KOSPI 200과 S&P 500 주가지수 선물의 상대적 가치를 이용한 거래시스템 개발)

  • Kim, Young-Min;Lee, Suk-Jun
    • Management & Information Systems Review
    • /
    • v.33 no.1
    • /
    • pp.45-63
    • /
    • 2014
  • A trading system is a computer trading program that automatically submits trades to an exchange. Mechanical a trading system to execute trade is spreading in the stock market. However, a trading system to trade a single asset might occur instability of the profit because payoff of this system is determined a asset movement. Therefore, it is necessary to develop a trading system that is trade two assets such as a pair trading that is to sell overvalued assets and buy the undervalued ones. The aim of this study is to propose a relative value based trading system designed to yield stable and profitable profits regardless of market conditions. In fact, we propose a procedure for building a trading system that is based on the rough set analysis of indicators derived from a price ratio between two assets. KOSPI 200 index futures and S&P 500 index futures are used as a data for evaluation of the proposed trading system. We intend to examine the usefulness of this model through an empirical study.

  • PDF

The Intraday Lead-Lag Relationships between the Stock Index and the Stock Index Futures Market in Korea and China (한국과 중국의 현물시장과 주가지수선물시장간의 선-후행관계에 관한 연구)

  • Seo, Sang-Gu
    • Management & Information Systems Review
    • /
    • v.32 no.4
    • /
    • pp.189-207
    • /
    • 2013
  • Using high-frequency data for 2 years, this study investigates intraday lead-lag relationship between stock index and stock index futures markets in Korea and China. We found that there are some differences in price discovery and volatility transmission between Korea and China after the stock index futures markets was introduced. Following Stoll-Whaley(1990) and Chan(1992), the multiple regression is estimated to examine the lead-lag patterns between the two markets by Newey-West's(1987) heteroskedasticity and autocorrelation consistent covariance matrix(HAC matrix). Empirical results of KOSPI 200 shows that the futures market leads the cash market and weak evidence that the cash market leads the futures market. New market information disseminates in the futures market before the stock market with index arbitrageurs then stepping in quickly to bring the cost-of-carry relation back into alignment. The regression tests for the conditional volatility which is estimated using EGARCH model do not show that there is a clear pattern of the futures market leading the stock market in terms of the volatility even though controlling nonsynchronous trading effects. This implies that information in price innovations that originate in the futures market is transmitted to the volatility of the cash market. Empirical results of CSI 300 shows that the cash market is found to play a more dominant role in the price discovery process after the Chinese index started a sharp decline immediately after the stock index futures were introduced. The new stock index futures markets does not function well in its price discovery performance at its infancy stage, apparently due to high barriers to entry into this emerging futures markets. Based on EGAECH model, the results uncover strong bi-directional dependence in the intraday volatility of both markets.

  • PDF