• Title/Summary/Keyword: stock index

Search Result 589, Processing Time 0.023 seconds

Risk and Return of Islamic and Conventional Indices on the Indonesia Stock Exchange

  • SURYADI, Suryadi;ENDRI, Endri;YASID, Mukhamad
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.23-30
    • /
    • 2021
  • The purpose of this study is to compare the level of risk and return of Islamic stocks in the Jakarta Islamic Index (JII) with conventional stocks on the IDX30 in the period from January 2017 to July 2019. The Sharpe ratio method is used to calculate risk and stock returns. The performance of the stock portfolio is measured by comparing the risk premium portfolio with the portfolio risk that is expressed as a standard deviation of the total risk. This study uses secondary data collected by the Indonesia Stock Exchange (IDX), which provides the names of stock issuers included in the JII and IDX30 indices along with their montly closing price. The results of the descriptive analysis show that the JII Sharpe ratio index from January 2017 to July 2019 is from the minimum range of -0.28820 to a maximum range of 0.05622, while the IDX30 Sharpe ratio index from January 2017 to July 2019 is from the minimum range of -0.09290 to the maximum range of 0.17436. The results of inferential analysis using a different test show that there is a significant difference between the Sharpe ratio JII and IDX30 in measuring the performance of the stock portfolio.

A Study on Developing a Profitable Intra-day Trading System for KOSPI 200 Index Futures Using the US Stock Market Information Spillover Effect

  • Kim, Sun-Woong;Choi, Heung-Sik;Lee, Byoung-Hwa
    • Journal of Information Technology Applications and Management
    • /
    • v.17 no.3
    • /
    • pp.151-162
    • /
    • 2010
  • Recent developments in financial market liberalization and information technology are accelerating the interdependence of national stock markets. This study explores the information spillover effect of the US stock market on the overnight and daytime returns of the Korean stock market. We develop a profitable intra-day trading strategy based on the information spillover effect. Our study provides several important conclusions. First, an information spillover effect still exists from the overnight US stock market to the current Korean stock market. Second, Korean investors overreact to both good and bad news overnight from the US. Therefore, there are significant price reversals in the KOSPI 200 index futures prices from market open to market close. Third, the overreaction effect is different between weekdays and weekends. Finally, the suggested intra-day trading system based on the documented overreaction hypothesis is profitable.

  • PDF

The Corporate Spinoffs and Long-run Stock Returns (기업분할의 장기성과에 대한 실증연구)

  • Hong, Dong-Hyun;Lee, Deok-Hoon;Hwang, Jae-Ho
    • Management & Information Systems Review
    • /
    • v.25
    • /
    • pp.83-114
    • /
    • 2008
  • We examine whether spinoffs improve long-run stock returns and analyze the factors of long run stock returns. The measures of long run stock returns are CAR(Cumulative Abnormal Returns) and BHAR(Buy and Hold Abnormal Returns). The expected factors of abnormal returns are methods of spinoffs, size, BV/MV, administrative costs, cashflow and Herfindahl index. We find that long-run returns of the case such as carve-out methods, small size, high BV/MV, low administrative costs, low cashflow and low Herfindahl index are larger than those of other cases. We show positive relationship between spinoffs and long-run stock returns(CAR and BHAR). The results supports spinoffs, as the methods of focusing on core business, are very usefulness of corporate restructuring.

  • PDF

Changes in Household Saving Rate and the Influencing Factors (가계 저축율의 변화 추이와 영향요인 분석)

  • Lee, Seong-Lim
    • Journal of the Korean Home Economics Association
    • /
    • v.49 no.8
    • /
    • pp.37-46
    • /
    • 2011
  • Using the 1987-2008 quarterly aggregated data of the Household Income and Expenditure Survey, this study investigated the factors influencing household saving rate. The independent variables in the AR regression model were the GDP growth rate, shares of the total household expenditure allocated to tax & social insurance, and education, the variables reflecting the conditions of the asset market including interest rate, stock market index, and real estate price index, and the variables representing the social economic conditions including the index of aging and income inequality. Among the independent variables interest rate, stock market index, and income inequality were found to be significantly associated with the household saving rate. These results suggested that the redistribution and financial market policies favorable to savers may be effective for raising the household saving rate.

Toward global optimization of case-based reasoning for the prediction of stock price index

  • Kim, Kyoung-jae;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.399-408
    • /
    • 2001
  • This paper presents a simultaneous optimization approach of case-based reasoning (CBR) using a genetic algorithm(GA) for the prediction of stock price index. Prior research suggested many hybrid models of CBR and the GA for selecting a relevant feature subset or optimizing feature weights. Most studies, however, used the GA for improving only a part of architectural factors for the CBR system. However, the performance of CBR may be enhanced when these factors are simultaneously considered. In this study, the GA simultaneously optimizes multiple factors of the CBR system. Experimental results show that a GA approach to simultaneous optimization of CBR outperforms other conventional approaches for the prediction of stock price index.

  • PDF

The Effect of COVID-19 Pandemic on Stock Market: An Empirical Study in Saudi Arabia

  • ALZYADAT, Jumah Ahmad;ASFOURA, Evan
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.5
    • /
    • pp.913-921
    • /
    • 2021
  • The objective of the study is to investigate the impact of the COVID-19 pandemic on Saudi Arabia stock market. The study relied on the data of the daily closing stock market price index Tadawul All Share Index (TASI), and the number of daily cases infected with COVID-19 during the period from March 15, 2020, to August 10, 2020. The study employs the Vector Auto-Regressive (VAR) model, the Impulse Response Function (IRF) and Autoregressive Conditional Heteroscedasticity (ARCH) models. The results of the correlation matrix and the Impulse Response Function (IRF) show that stock market returns responded negatively to the growth in COVID-19 infected cases during the pandemic. The results of ARCH model confirmed the negative impact of COVID-19 pandemic on KSA stock market returns. The results also showed that the negative market reaction was strong during the early days of the COVID-19 pandemic. The study concluded that stock market in KSA responded quickly to the COVID-19 pandemic; the response varies over time according to the stage of the pandemic. However, the Saudi government's response time and size of the stimulus package have played an important role in alleviating the impacts of the COVID-19 pandemic on Saudi Arabia Stock Market.

A Prediction of Stock Price Movements Using Support Vector Machines in Indonesia

  • ARDYANTA, Ervandio Irzky;SARI, Hasrini
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.8
    • /
    • pp.399-407
    • /
    • 2021
  • Stock movement is difficult to predict because it has dynamic characteristics and is influenced by many factors. Even so, there are some approaches to predict stock price movements, namely technical analysis, fundamental analysis, and sentiment analysis. Many researches have tried to predict stock price movement by utilizing these analysis techniques. However, the results obtained are varied and inconsistent depending on the variables and object used. This is because stock price movement is influenced by a variety of factors, and it is likely that those studies did not cover all of them. One of which is that no research considers the use of fundamental analysis in terms of currency exchange rates and the use of foreign stock price index movement related to the technical analysis. This research aims to predict stock price movements in Indonesia based on sentiment analysis, technical analysis, and fundamental analysis using Support Vector Machine. The result obtained has a prediction accuracy rate of 65,33% on an average. The inclusion of currency exchange rate and foreign stock price index movement as a predictor in this research which can increase average prediction accuracy rate by 11.78% compared to the prediction without using these two variables which only results in average prediction accuracy rate of 53.55%.

LSTM-based Prediction Performance of COVID-19 Fear Index on Stock Prices: Untact Stocks versus Contact Stocks (LSTM 기반 COVID-19 공포지수의 주가 예측 성과: 언택트 주식과 콘택트 주식)

  • Kim, Sun Woong
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.8
    • /
    • pp.329-338
    • /
    • 2022
  • As the non-face-to-face economic situation developed due to the COVID-19 pandemic, untact stock groups appeared in the stock market. This study proposed the Korea COVID-19 fear index following the spread of infectious diseases in the COVID-19 pandemic situation and analyzed the influence on the untact stock and contact stock returns. The results of the empirical analysis are as follows. First, as a result of the Granger causality analysis using the Korea COVID-19 fear index, significant causality was found in the return of contact stocks such as Korean Air, Hana Tour, CJ CGV, and Paradise. Second, as a result of stock price prediction based on the LSTM model, Kakao, Korean Air, and Naver's prediction performance was high. Third, the investment performances of the Alexander filter entry rule using the predicted stock price were high in Naver futures and Kakao futures. This study can find a difference from previous studies in that it analyzed the influence of the spread of the COVID-19 pandemic on untact and contact stocks in the COVID-19 situation where the non-face-to-face economy is in full swing.

A Multivariate GARCH Analysis on International Stock Market Integration: Korean Market Case

  • Kim, Namhyoung
    • Management Science and Financial Engineering
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2015
  • Financial integration is a phenomenon in which global financial markets are closely connected with each other. This article investigates the integration of Korean stock market with other stock markets using a multivariate GARCH analysis. We chose total seven countries including Korea for this paper based on the amount of export and then we chose major stock indices which can be thought as representative stock markets of those countries. The empirical analysis has shown that countries' financial integration.

Level Shifts and Long-term Memory in Stock Distribution Markets (주식유통시장의 층위이동과 장기기억과정)

  • Chung, Jin-Taek
    • Journal of Distribution Science
    • /
    • v.14 no.1
    • /
    • pp.93-102
    • /
    • 2016
  • Purpose - The purpose of paper is studying the static and dynamic side for long-term memory storage properties, and increase the explanatory power regarding the long-term memory process by looking at the long-term storage attributes, Korea Composite Stock Price Index. The reason for the use of GPH statistic is to derive the modified statistic Korea's stock market, and to research a process of long-term memory. Research design, data, and methodology - Level shifts were subjected to be an empirical analysis by applying the GPH method. It has been modified by taking into account the daily log return of the Korea Composite Stock Price Index a. The Data, used for the stock market to analyze whether deciding the action by the long-term memory process, yield daily stock price index of the Korea Composite Stock Price Index and the rate of return a log. The studies were proceeded with long-term memory and long-term semiparametric method in deriving the long-term memory estimators. Chapter 2 examines the leading research, and Chapter 3 describes the long-term memory processes and estimation methods. GPH statistics induced modifications of statistics and discussed Whittle statistic. Chapter 4 used Korea Composite Stock Price Index to estimate the long-term memory process parameters. Chapter 6 presents the conclusions and implications. Results - If the price of the time series is generated by the abnormal process, it may be located in long-term memory by a time series. However, test results by price fixed GPH method is not followed by long-term memory process or fractional differential process. In the case of the time-series level shift, the present test method for a long-term memory processes has a considerable amount of bias, and there exists a structural change in the stock distribution market. This structural change has implications in level shift. Stratum level shift assays are not considered as shifted strata. They exist distinctly in the stock secondary market as bias, and are presented in the test statistic of non-long-term memory process. It also generates an error as a long-term memory that could lead to false results. Conclusions - Changes in long-term memory characteristics associated with level shift present the following two suggestions. One, if any impact outside is flowed for a long period of time, we can know that the long-term memory processes have characteristic of the average return gradually. When the investor makes an investment, the same reasoning applies to him in the light of the characteristics of the long-term memory. It is suggested that when investors make decisions on investment, it is necessary to consider the characters of the long-term storage in reference with causing investors to increase the uncertainty and potential. The other one is the thing which must be considered variously according to time-series. The research for price-earnings ratio and investment risk should be composed of the long-term memory characters, and it would have more predictability.