• 제목/요약/키워드: stock index

Search Result 589, Processing Time 0.025 seconds

A Novel Parameter Initialization Technique for the Stock Price Movement Prediction Model

  • Nguyen-Thi, Thu;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.132-139
    • /
    • 2019
  • We address the problem about forecasting the direction of stock price movement in the Korea market. Recently, the deep neural network is popularly applied in this area of research. In deep neural network systems, proper parameter initialization reduces training time and improves the performance of the model. Therefore, in our study, we propose a novel parameter initialization technique and apply this technique for the stock price movement prediction model. Specifically, we design a framework which consists of two models: a base model and a main prediction model. The base model constructed with LSTM is trained by using the large data which is generated by a large amount of the stock data to achieve optimal parameters. The main prediction model with the same architecture as the base model uses the optimal parameter initialization. Thus, the main prediction model is trained by only using the data of the given stock. Moreover, the stock price movements can be affected by other related information in the stock market. For this reason, we conducted our research with two types of inputs. The first type is the stock features, and the second type is a combination of the stock features and the Korea Composite Stock Price Index (KOSPI) features. Empirical results conducted on the top five stocks in the KOSPI list in terms of market capitalization indicate that our approaches achieve better predictive accuracy and F1-score comparing to other baseline models.

The Effect of Managerial Ownership on Stock Price Crash Risk in Distribution and Service Industries

  • RYU, Haeyoung;CHAE, Soo-Joon
    • Journal of Distribution Science
    • /
    • v.19 no.1
    • /
    • pp.27-35
    • /
    • 2021
  • Purpose: This study is to investigate the effect of managerial ownership level in distribution and service companies on the stock price crash. The managerial ownership level affects the firm's information disclosure policy. If managers conceal or withholds business-related unfavorable factors over a long period, the firm's stock price is likely to plummet. In a similar vein, management's equity affects information opacity, and information asymmetry affects stock price collapse. Research design, data, and methodology: A regression analysis is conducted using the data on companies listed on the Korea Composite Stock Price Index (KOSPI) between 2012-2017 to examine the effect of the managerial ownership level on stock price crash risks. Results: Logistic and regression results indicate that the stock price crash risk was reduced as managerial ownership levels are increased. The managerial ownership level has a significant negative coefficient on stock price crash risk, negative conditional return skewness of firm-specific weekly return distribution, and asymmetric volatility between positive and negative price-to-earnings ratios. Conclusions: As the ownership and management align, the likeliness of withholding business-related information is reduced. This study's results imply that the stock price crash risk reduces as the managerial ownership level increases because shareholder and manager interests coincide, thereby reducing information asymmetry.

The Introduction of KOSPI 200 Stock Price Index Futures and the Asymmetric Volatility in the Stock Market (KOSPI 200 주가지수선물 도입과 주식시장의 비대칭적 변동성)

  • Byun, Jong-Cook;Jo, Jung-Il
    • The Korean Journal of Financial Management
    • /
    • v.20 no.1
    • /
    • pp.191-212
    • /
    • 2003
  • Recently, there is a growing body of literature that suggests that information inefficiency is one of the causes of the asymmetric volatility. If this explanation for the asymmetric volatility is appropriate, then innovations, such as the introduction of futures, may be expected to impact the asymmetric volatility of stock market. As transaction costs and margin requirements in the futures market are lower than those in the spot market, new information is transmitted to futures prices more quickly and affects spot prices through arbitrage trading with spots. Also, the merit of the futures market may attract noise traders away from the spot market to the futures market. This study examines the impact of futures on the asymmetry of stock market volatility. If the asymmetric volatility is significant lower post-futures and exist in the futures market, it has validity that the asymmetric volatility is caused by information inefficiency in the spot market. The data examined are daily logarithmic returns on KOSPI 200 stock price index from January 4, 1993 to December 26, 2000. To examine the existence of the asymmetric volatility in the futures market, logarithmic returns on KOSPI 200 futures are used from May 4, 1996 to December 26, 2000. We used a conditional mode of TGARCH(threshold GARCH) of Glosten, Jagannathan and Runkel(1993). Pre-futures the spot market exhibits significant asymmetric responses of volatility to news and post-futures asymmetries are significantly lower, irrespective of bear market and bull market. The results suggest that the introduction of stock index futures has an effect on the asymmetric volatility of the spot market and are inconsistent with leverage being the sole explanation of asymmetry. However, it is found that the volatility of futures is not so asymmetric as expected.

  • PDF

An Empirical Study on the Characteristics of Stock Returns in Chinese Stock Market -Focusing on the period of 1995 to 2007 - (중국 주식시장의 수익률 특성에 관한 실증연구 - 1995년부터 2007년 기간을 중심으로 -)

  • Kim, Kyung Won;Choi, Joon Hwan
    • International Area Studies Review
    • /
    • v.13 no.3
    • /
    • pp.287-308
    • /
    • 2009
  • This article examines the distributional characteristics of the return of Chinese stock market indices. The majority of previous empirical researches have tended to focus upon the simple stock market index. However, this study focuses on the four indices which represent the characteristics of each stock market index. The empirical findings indicate that the returns of the four chinese indices are not normally distributed at conventional levels. The Ljimg-Box -statistics indicate the returns of the index of A shares are not serially autocorrelated. However, the returns of the index of B shares are serially autocorrelated. The empirical findings also indicate returns of the four chinese indices are not serially autocorrelated. The statistics of Regression Specification Error Test and ARCH indicate the returns of all four indices are not serially linear. The findings also indicate that E- GARCH model is the most fittest model for the returns of the four chinese indices and the forecast error can be reduced by using student t distribution rather normal distribution.

Impact of Oil Price Shocks on Stock Prices by Industry (국제유가 충격이 산업별 주가에 미치는 영향)

  • Lee, Yun-Jung;Yoon, Seong-Min
    • Environmental and Resource Economics Review
    • /
    • v.31 no.2
    • /
    • pp.233-260
    • /
    • 2022
  • In this paper, we analyzed how oil price fluctuations affect stock price by industry using the non-parametric quantile causality test method. We used weekly data of WTI spot price, KOSPI index, and 22 industrial stock indices from January 1998 to April 2021. The empirical results show that the effect of changes in oil prices on the KOSPI index was not significant, which can be attributed to mixed responses of diverse stock prices in several industries included in the KOSPI index. Looking at the stock price response to oil price by industry, the 9 of 18 industries, including Cloth, Paper, and Medicine show a causality with oil prices, while 9 industries, including Food, Chemical, and Non-metal do not show a causal relationship. Four industries including Medicine and Communication (0.45~0.85), Cloth (0.15~0.45), and Construction (0.5~0.6) show causality with oil prices more than three quantiles consecutively. However, the quantiles in which causality appeared were different for each industry. From the result, we find that the effects of oil price on the stock prices differ significantly by industry, and even in one industry, and the response to oil price changes is different depending on the market situation. This suggests that the government's macroeconomic policies, such as industrial and employment policies, should be performed in consideration of the differences in the effects of oil price fluctuations by industry and market conditions. It also shows that investors have to rebalance their portfolio by industry when oil prices fluctuate.

System Dynamics Approach for the Forecasting KOSPI (시스템다이내믹스를 활용한 종합 주가지수 예측 모델 연구)

  • Cho, Kang-Rae;Jeong, Kwan-Yong
    • Korean System Dynamics Review
    • /
    • v.8 no.2
    • /
    • pp.175-190
    • /
    • 2007
  • Stock market volatility largely depends on firms' value and growth opportunities. However, with the globalization of world economy, the effect of the synchronization in major countries is gaining its importance. Also, domestically, the business cycle and cash market of the country are additional factors needed to be considered. The main purpose of this research is to attest the application and usefulness of System Dynamics as a general stock market forecasting tool. Throughout this research, System Dynamics suggests a conceptual model for forecasting a KOSPI(Korea Composite Stock Price Index), taking the factors of the composite stock price indexes in traditional researches. In conclusion of this research, System Dynamics was proved to bean appropriate model for forecasting the volatility and direction of a stock market as a whole. With its timely adaptability, System Dynamic overcomes the limit of traditional statistic models.

  • PDF

The Impacts of Changes in Brand Attributes on Financial Market Valuation of Korean Firms

  • Lee, Hee Tae;Kim, Byung-Do
    • Asia Marketing Journal
    • /
    • v.16 no.1
    • /
    • pp.169-193
    • /
    • 2014
  • The earlier studies have verified that brand values have significant impact on financial values such as stock return and stock price to justify marketing costs for brand building. Except for Mizik and Jacobson (2008), however, little research has addressed what kinds of brand components composing brand values have a significant relationship with financial values. As a follow-up research of Mizik and Jacobson (2008), this research focuses on what kinds of relationships exist between the unanticipated change of each brand asset component and stock return, one of the financial values. The authors selected six brand asset components from the Korea-Brand Power Index(K-BPI) data in which 'Top of Mind,' 'Unaided Awareness,' and 'Aided Awareness' are brand awareness measures and 'Image,' 'Purchase Intention,' and 'Preference' are brand loyalty measures. Out of those six brand components, they found that unanticipated changes of 'Top of Mind,' 'Unaided Awareness,' 'Image,' and 'Preference' have significantly positive effect on unexpected stock return change. Therefore, they conclude that these four brand asset components provide incremental information in explaining unanticipated stock return.

  • PDF

Study on the factors that affect the fluctuations in the price of real estate for a digital economy (디지털 경제에 부동산 가격의 변동에 영향을 주는 요인에 관한 연구)

  • Choi, Jeong-Il;Lee, Ok-Dong
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.59-70
    • /
    • 2013
  • As people invest most of their asset in real estate, there is high interest in changing in housing and real estate prices in the future for a digital economy. Various variables are affecting the housing and real estate market. Among them, four variables : households, productive population, interest rate and index price are chosen and analyzed representatively. This study is aimed to build decision model of apartment prices in Seoul empirically. From the analysis result the stock index is the only variable which is significant statistically to apartments in Seoul. From this study, the households and productive population show the same direction as shown in the previous studies before but not significant statistically. Among the independent variables, the stock index is chosen as a major variable of determinant of Seoul apartment price. From the result of the research, prediction of stock market should be preceded to forecast the movement of housing and real estate market in the future.

Daily Stock Price Forecasting Using Deep Neural Network Model (심층 신경회로망 모델을 이용한 일별 주가 예측)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.39-44
    • /
    • 2018
  • The application of deep neural networks to finance has received a great deal of attention from researchers because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from large sets of data, which is required to describe nonlinear input-output relations of financial time series. The paper presents a new deep neural network model where single layered autoencoder and 4 layered neural network are serially coupled for stock price forecasting. The autoencoder extracts deep features, which are fed into multi-layer neural networks to predict the next day's stock closing prices. The proposed deep neural network is progressively learned layer by layer ahead of the final learning of the total network. The proposed model to predict daily close prices of KOrea composite Stock Price Index (KOSPI) is built, and its performance is demonstrated.

Daily Stock Price Prediction Using Fuzzy Model (퍼지 모델을 이용한 일별 주가 예측)

  • Hwang, Hee-Soo
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.603-608
    • /
    • 2008
  • In this paper an approach to building fuzzy model to predict daily open, close, high, and low stock prices is presented. One of prior problems in building a stock prediction model is to select most effective indicators for the stock prediction. The problem is overcome by the selection of information used in the analysis of stick-chart as the input variables of our fuzzy model. The fuzzy rules have the premise and the consequent, in which they are composed of trapezoidal membership functions, and nonlinear equations, respectively. DE(Differential Evolution) searches optimal fuzzy rules through an evolutionary process. To evaluate the effectiveness of the proposed approach numerical example is considered. The fuzzy models to predict open, high, low, and close prices of KOSPI(KOrea composite Stock Price Index) on a daily basis are built, and their performances are demonstrated and compared with those of neural network.