• Title/Summary/Keyword: stock data

Search Result 1,658, Processing Time 0.023 seconds

Stock News Dataset Quality Assessment by Evaluating the Data Distribution and the Sentiment Prediction

  • Alasmari, Eman;Hamdy, Mohamed;Alyoubi, Khaled H.;Alotaibi, Fahd Saleh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • This work provides a reliable and classified stocks dataset merged with Saudi stock news. This dataset allows researchers to analyze and better understand the realities, impacts, and relationships between stock news and stock fluctuations. The data were collected from the Saudi stock market via the Corporate News (CN) and Historical Data Stocks (HDS) datasets. As their names suggest, CN contains news, and HDS provides information concerning how stock values change over time. Both datasets cover the period from 2011 to 2019, have 30,098 rows, and have 16 variables-four of which they share and 12 of which differ. Therefore, the combined dataset presented here includes 30,098 published news pieces and information about stock fluctuations across nine years. Stock news polarity has been interpreted in various ways by native Arabic speakers associated with the stock domain. Therefore, this polarity was categorized manually based on Arabic semantics. As the Saudi stock market massively contributes to the international economy, this dataset is essential for stock investors and analyzers. The dataset has been prepared for educational and scientific purposes, motivated by the scarcity of data describing the impact of Saudi stock news on stock activities. It will, therefore, be useful across many sectors, including stock market analytics, data mining, statistics, machine learning, and deep learning. The data evaluation is applied by testing the data distribution of the categories and the sentiment prediction-the data distribution over classes and sentiment prediction accuracy. The results show that the data distribution of the polarity over sectors is considered a balanced distribution. The NB model is developed to evaluate the data quality based on sentiment classification, proving the data reliability by achieving 68% accuracy. So, the data evaluation results ensure dataset reliability, readiness, and high quality for any usage.

A Study on the Management of Stock Data with an Object Oriented Database Management System (객체지향 데이타베이스를 이용한 주식데이타 관리에 관한 연구)

  • 허순영;김형민
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.21 no.3
    • /
    • pp.197-214
    • /
    • 1996
  • Financial analysis of stock data usually involves extensive computation of large amount of time series data sets. To handle the large size of the data sets and complexity of the analyses, database management systems have been increasingly adaopted for efficient management of stock data. Specially, relational database management system is employed more widely due to its simplistic data management approach. However, the normalized two-dimensional tables and the structured query language of the relational system turn out to be less effective than expected in accommodating time series stock data as well as the various computational operations. This paper explores a new data management approach to stock data management on the basis of an object-oriented database management system (ODBMS), and proposes a data model supporting times series data storage and incorporating a set of financial analysis functions. In terms of functional stock data analysis, it specially focuses on a primitive set of operations such as variance of stock data. In accomplishing this, we first point out the problems of a relational approach to the management of stock data and show the strength of the ODBMS. We secondly propose an object model delineating the structural relationships among objects used in the stock data management and behavioral operations involved in the financial analysis. A prototype system is developed using a commercial ODBMS.

  • PDF

Stock Forecasting Using Prophet vs. LSTM Model Applying Time-Series Prediction

  • Alshara, Mohammed Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.185-192
    • /
    • 2022
  • Forecasting and time series modelling plays a vital role in the data analysis process. Time Series is widely used in analytics & data science. Forecasting stock prices is a popular and important topic in financial and academic studies. A stock market is an unregulated place for forecasting due to the absence of essential rules for estimating or predicting a stock price in the stock market. Therefore, predicting stock prices is a time-series problem and challenging. Machine learning has many methods and applications instrumental in implementing stock price forecasting, such as technical analysis, fundamental analysis, time series analysis, statistical analysis. This paper will discuss implementing the stock price, forecasting, and research using prophet and LSTM models. This process and task are very complex and involve uncertainty. Although the stock price never is predicted due to its ambiguous field, this paper aims to apply the concept of forecasting and data analysis to predict stocks.

Predicting stock price direction by using data mining methods : Emphasis on comparing single classifiers and ensemble classifiers

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.111-116
    • /
    • 2017
  • This paper proposes a data mining approach to predicting stock price direction. Stock market fluctuates due to many factors. Therefore, predicting stock price direction has become an important issue in the field of stock market analysis. However, in literature, there are few studies applying data mining approaches to predicting the stock price direction. To contribute to literature, this paper proposes comparing single classifiers and ensemble classifiers. Single classifiers include logistic regression, decision tree, neural network, and support vector machine. Ensemble classifiers we consider are adaboost, random forest, bagging, stacking, and vote. For the sake of experiments, we garnered dataset from Korea Stock Exchange (KRX) ranging from 2008 to 2015. Data mining experiments using WEKA revealed that random forest, one of ensemble classifiers, shows best results in terms of metrics such as AUC (area under the ROC curve) and accuracy.

Forecasting Symbolic Candle Chart-Valued Time Series

  • Park, Heewon;Sakaori, Fumitake
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.6
    • /
    • pp.471-486
    • /
    • 2014
  • This study introduces a new type of symbolic data, a candle chart-valued time series. We aggregate four stock indices (i.e., open, close, highest and lowest) as a one data point to summarize a huge amount of data. In other words, we consider a candle chart, which is constructed by open, close, highest and lowest stock indices, as a type of symbolic data for a long period. The proposed candle chart-valued time series effectively summarize and visualize a huge data set of stock indices to easily understand a change in stock indices. We also propose novel approaches for the candle chart-valued time series modeling based on a combination of two midpoints and two half ranges between the highest and the lowest indices, and between the open and the close indices. Furthermore, we propose three types of sum of square for estimation of the candle chart valued-time series model. The proposed methods take into account of information from not only ordinary data, but also from interval of object, and thus can effectively perform for time series modeling (e.g., forecasting future stock index). To evaluate the proposed methods, we describe real data analysis consisting of the stock market indices of five major Asian countries'. We can see thorough the results that the proposed approaches outperform for forecasting future stock indices compared with classical data analysis.

Effects of Fintech on Stock Return: Evidence from Retail Banks Listed in Indonesia Stock Exchange

  • ASMARANI, Saraya Cita;WIJAYA, Chandra
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.7
    • /
    • pp.95-104
    • /
    • 2020
  • This study examines the effect of fintech on retail banks stock return listed in Indonesia Stock Exchange for the period of 2016-2018 as today's new technology lead to the emergence of fintech companies playing the same role as retail banks in the financial industry. This study is conducted quantitatively using monthly data from January 2016 to October 2018 and uses fintech as independent variable, proxied by fintech funding frequency and fintech funding value. Data transformation is conducted due to data volatility. The data of fintech funding, both frequency and value, is transformed into standardized fintech funding and growth of fintech funding. The data is obtained from Crunchbase, while the data of stock returns is obtained from Investing. This study further analyzes the data using Fama French Three-Factor Model and panel data regression. We found that fintech has no significant effect on retail banks' stock returns listed in Indonesia Stock Exchange for the period of 2016-2018. The findings of the study provide some useful insights in understanding fintech companies' current position to retail banks in Indonesia. This study also suggests banking institutions, fintech companies, policy-makers, and others to take advantageous steps in building inclusive financial sectors.

Data-Mining Bootstrap Procedure with Potential Predictors in Forecasting Models: Evidence from Eight Countries in the Asia-Pacific Stock Markets

  • Lee, Hojin
    • East Asian Economic Review
    • /
    • v.23 no.4
    • /
    • pp.333-351
    • /
    • 2019
  • We use a data-mining bootstrap procedure to investigate the predictability test in the eight Asia-Pacific regional stock markets using in-sample and out-of-sample forecasting models. We address ourselves to the data-mining bias issues by using the data-mining bootstrap procedure proposed by Inoue and Kilian and applied to the US stock market data by Rapach and Wohar. The empirical findings show that stock returns are predictable not only in-sample but out-of-sample in Hong Kong, Malaysia, Singapore, and Korea with a few exceptions for some forecasting horizons. However, we find some significant disparity between in-sample and out-of-sample predictability in the Korean stock market. For Hong Kong, Malaysia, and Singapore, stock returns have predictable components both in-sample and out-of-sample. For the US, Australia, and Canada, we do not find any evidence of return predictability in-sample and out-of-sample with a few exceptions. For Japan, stock returns have a predictable component with price-earnings ratio as a forecasting variable for some out-of-sample forecasting horizons.

Developing Stock Pattern Searching System using Sequence Alignment Algorithm (서열 정렬 알고리즘을 이용한 주가 패턴 탐색 시스템 개발)

  • Kim, Hyong-Jun;Cho, Hwan-Gue
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.6
    • /
    • pp.354-367
    • /
    • 2010
  • There are many methods for analyzing patterns in time series data. Although stock data represents a time series, there are few studies on stock pattern analysis and prediction. Since people believe that stock price changes randomly we cannot predict stock prices using a scientific method. In this paper, we measured the degree of the randomness of stock prices using Kolmogorov complexity, and we showed that there is a strong correlation between the degree and the accuracy of stock price prediction using our semi-global alignment method. We transformed the stock price data to quantized string sequences. Then we measured randomness of stock prices using Kolmogorov complexity of the string sequences. We use KOSPI 690 stock data during 28 years for our experiments and to evaluate our methodology. When a high Kolmogorov complexity, the stock price cannot be predicted, when a low complexity, the stock price can be predicted, but the prediction ratio of stock price changes of interest to investors, is 12% prediction ratio for short-term predictions and a 54% prediction ratio for long-term predictions.

The Stock Price Response of Palm Oil Companies to Industry and Economic Fundamentals

  • ARINTOKO, Arintoko
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.99-110
    • /
    • 2021
  • This study aims to examine empirically the industry and economic fundamental factors that affect the stock prices of the leading palm oil company in Indonesia. The dynamics of stock price are analyzed using the autoregressive distribution lag (ARDL) model both for symmetric and asymmetric effects. The data used in this study are monthly data for the period from 2008:01 to 2020:03. In the long run, the company stock price moves in line with the competitor company stock price at the current time. The palm oil price has a positive effect on the stock price. Meanwhile, inflation negatively affects the stock price in the short run. The estimated equilibrium correction coefficient indicates a reasonably quick correction of the distortion of the stock price equilibrium in monthly dynamics. However, fundamental factors have asymmetric effects, especially the response of stock price when these factors decrease rather than increase in the short run. Stock prices that are responsive to declines in fundamental performance should be of particular concern to both investors and management in their strategic decision making. The results of this study will contribute to the enrichment of literature related to stock prices from the viewpoint of economic analysis on firm-level data.

The Effect of Corporate Integrity on Stock Price Crash Risk

  • YIN, Hong;ZHANG, Ruonan
    • Asian Journal of Business Environment
    • /
    • v.10 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • Purpose: This research aims to investigate the impact of corporate integrity on stock price crash risk. Research design, data, and methodology: Taking 1419 firms listed in Shenzhen Stock Exchange in China as a sample, this paper empirically analyzed the relationship between corporate integrity and stock price crash risk. The main integrity data was hand-collected from Shenzhen Stock Exchange Website. Other financial data was collected from CSMAR Database. Results: Findings show that corporate integrity can significantly decrease stock price crash risk. After changing the selection of samples, model estimation methods and the proxy variable of stock price crash risk, the conclusion is still valid. Further research shows that the relationship between corporate integrity and stock price crash risk is only found in firms with weak internal control and firms in poor legal system areas. Conclusions: Results of the study suggest that corporate integrity has a significant influence on behaviors of managers. Business ethics reduces the likelihood of managers to overstate financial performance and hide bad news, which leads to the low likelihood of future stock price crashes. Meanwhile, corporate integrity can supplement internal control and legal system in decreasing stock price crash risks.