This paper deals with traveling salesman problem(TSP) with the stochastic travel time. Practically, the travel time between demand points changes according to day and time zone because of traffic interference and jam. Since the almost pervious studies focus on TSP with the deterministic travel time, it is difficult to apply those results to logistics problem directly. But many logistics problems are strongly related with stochastic situation such as stochastic travel time. We need to develop the efficient solution method for the TSP with stochastic travel time. From the previous researches, we know that Q-learning technique gives us to deal with stochastic environment and neural network also enables us to calculate the Q-value of Q-learning algorithm. In this paper, we suggest an algorithm for TSP with the stochastic travel time integrating Q-learning and neural network. And we evaluate the validity of the algorithm through computational experiments. From the simulation results, we conclude that a new route obtained from the suggested algorithm gives relatively more reliable travel time in the logistics situation with stochastic travel time.
The behavioral mechanism underlying the traffic assignment model is a choice, or decision-making process of traveling paths between origins and destinations. The deterministic approach to traffic assignment assumes that travelers choose shortest path from their origin-destination pair. Although this assumption seems reasonable, it presumes that all travelers have perfect information regarding travel time, that they make consistently correct decision, and that they all behave in identical fashion. Stochastic user equilibrium assignment relaxes these presumptions by including a random component in traveler's perception of travel time. The objective of this study is to compare "A Model of Deterministic User Equilibrium Assignment" with "Models of Stochastic User Equilibrium Assignment" in the theoretical and practical aspects. Specifically, SUE models are developed to logit and probit based models according to discrete choice functions. The models were applied to sioux Falls net ork consisting of 24 zones, 24 nodes and 76 links. The distribution of perceived travel time was obtained by using the relationship between speed and traffic flow.
Vehicle travel time (empty travel time pius loaded travel time) is a key parameter for designing AGV-based material handling systems. Especially, the determination of empty vehicle travel time is difficult because of the stochastic nature of the empty vehicle locations. This paper presents a method to estimate vehicle travel times for AGV-based material transport systems. The model considers probabilistic aspects for the travel time and vehicle location under random vehicle selection rule and nearest vehicle selection rule. The estimation of empty travel time is of major effort. Simulation experiments are used to verify the proposed travel time model, and the simulation results show that the presented model provides reasonable travel time estimations.
최근 몇 년간 도시교통문제의 해결책으로 부각되어온 지능형교통체계(ITS : Intelligent Transport System)의 한 분야로 첨단여행자 정보체계(ATIS : Advanced Travellers Information System)는 자동차에 장착된 항법장치(CNS)를 통해 운전자에게 원하는 목적지까지 최적경로를 제공하거나 경로에 대한 통행시간 정보를 제공 또는 예측해 주는 시스템이다. 본 연구에서는 이러한 최적경로 제공이나 통행시간 예측에 있어 좀 더 효율적인 통행시간 예측모형을 개발하고자 하였다. 현재까지의 통행시간 예측은 운전자가 통행을 시작할 때의 교통상황에 대한 정보이기 때문에 운전 중에 달라지는 교통상황을 반영할 수 없어 이로 인해 운전자가 경험하는 통행시간과 큰 차이를 발생시킬 수 있다. 본 연구에서는 이러한 불합리적인 예측시스템을 개선시킬 수 있는 예측된(predicted) 통행시간 예측 모형을 개발하고자 하였다. 이를 위해 우선 통행시간 예측모형을 특정링크에 적용시켜 모형들의 예측치와 실제 통행시간을 비교하여 교통량 흐름 패턴에 따라 어느 모형이 적합한지, 또 예측시간이 달라짐에 따라 모형들의 적합도와 첨두와 비첨두시 예측시간 간격에 따라 예측치와 실측치의 오차율을 알아보았다, 이를 통해 선정된 확률과정 모형과 칼만 필터링 예측모형을 서울시의 4개축에 대해서 다시 적용해 보았다. 그 결과 단기통행시간 예측에 있어서는 칼만필터링모형이, 장기 통행시간 예측에 있어서는 확률과정 모형이 통행시간 예측에 있어 우수한 모형임을 밝혀냈다. 마지막으로 서울시 28개 교통축의 5분 후 통행시간 예측에 칼만필터링 모형을 이용하여 오차분석을 적용하여 보았다. 그 결과 칼만필터링 모형이 신뢰할 만한 오차율을 보였다.
도심지에서 수요지간의 이동시간은 복잡한 도로사정과 외부환경으로 인하여 실시간 변화하는 교통상황에 큰 영향을 받고 있으며, 수요는 시기나 성향에 따라 확률적으로 변화하고 있다. 대부분의 차량경로문제 연구는 차량경로를 선정함에 있어 수요지간의 이동거리와 평균속력, 확정된 수요를 고려하여 경로를 구성하고 있으며, 교통상황과 확률적인 수요의 동적인 외부환경 반영이 미흡하였다. 본 연구에서는 원활 지체 정체의 교통상황과 확률적인 수요를 고려한 현실적인 차량경로문제를 제안하였다. 수리모형을 구축하고, CPLEX 11.1을 이용하여 검증하였으며, 총 소요시간을 최소화하는 Hybrid 유전자 알고리즘을 제안하였다. 교통상황과 확률적 수요를 고려한 차량경로문제의 결과를 기존의 휴리스틱 알고리즘과 비교하였으며, 본 연구에서 제안한 알고리즘이 가장 우수한 해를 제공하였다.
The 10th International Conference on Construction Engineering and Project Management
/
pp.242-246
/
2024
Automated route planning is an important tool in the field of built environment. For example, a high-quality route planning method can improve the logistics planning of projects, thereby enhancing the performance of projects and the effectiveness of management. However, the traditional automated route planning is performed based on the predicted mean value travel time of candidate routes. Such a point estimate neglects the purpose of the trip and can further lead to a suboptimal decision. Motivated by this challenge, this study proposes an innovative framework for trip purpose based route planning. The proposed artificial intelligence and stochastic optimization framework recommends the most appropriate travel route for decision makers by fully considering their trip requirements beyond just the shortest mean value travel time. In addition to its theoretical contributions, our proposed route planning method will also contribute to the current logistics planning practice. Future research may be devoted to the real-life implementation of the proposed methodology in a broader context to provide empirical insights for practitioners in various industries.
전통적으로 동적 교통망 모형들은 실시간 교통운영 문제를 위한 도구로 인식되어 왔다. 이와 같은 모형들을 활용하는 방안 중 하나는 예측통행시간을 생성하는 것이다. 예측통행시간 정보는 통행자들이 혼잡한 지역에서 덜 혼잡한 지역으로 경로를 전환할 수 있도록 해 주는데 이는 교통망의 용량을 효과적으로 활용하게 한다. 이러한 접근 방법은 돌발상황이 발생했을 때 매우 효과적일 것으로 예상된다. 이 때 고려해야 할 사항은 통행시간정보가 미래 통행여건 자체에 영향을 준다는 점이다. 이로 인해 예기치 못한 과잉반응(over-reaction)을 야기할 수 있으며 예측정보의 신뢰도를 떨어뜨리는 요인으로 작용할 수도 있다. 본 연구에서는 돌발상황 발생 시를 대상으로 교통망 차원의 통행시간 예측모형을 제시한다. 이 모형에서는 모든 운전자가 개인 차내 단말기를 통해 상세한 교통정보를 이용할 수 있으며 이러한 정보를 바탕으로 경로선택에 관한 의사결정을 할 수 있다고 가정하였다. 경로기반(route-based)의 확률론적 변등부등식(stochastic variational inequality)을 통행시간예측의 기본모형으로 사용하였으며 운전자의 경로전환의사를 반영하기 위해 경로전환함수를 적용하였다. 컴퓨터 프로그램과 간단한 교통망 분석을 통해 제안된 모형의 특성을 살펴보았다.
The stochastic vehicle routing problem (VRP) is a problem of growing importance since it includes a reality that the deterministic VRP does not have. The stochastic VRP arises whenever some elements of the problem are random. Common examples are stochastic service quantities and stochastic travel times. The solution methodologies for the stochastic VRP are very intricate and regarded as computationally intractable. Even heuristics are hard to develope and implement. On possible way of solving it is to apply a solution for the deterministic VRP. This paper presents a performance evaluation of four simple heuristic for the deterministic VRP is a stochastic environment. The heuristics are modified to consider the time window constraints. The computational results show that some of them perform very well in different cases of the stochastic VRP.
To constuct the stochastic model for performance evaluation of Multi-AGV, two aspects must be considered. The first is stochastic situation for moving jobs. The second is the dispatching rule of AGV. In this paper, the stochastic model for performance evaluation of Multi-AGV is developed. The case of stochastic model with two AGV is developed. But it difficult to solve in the case of stochastic model with more than three AGV because the model have three-ordered equations. The evaluation factor of the model is utilization and empty travel time of AGV. Using these factors, one can easily evaluate a wide range of handling and layout alternatives from given flow data. Hence, the model would be most effective when used in the early stage of designing to narrow down the number of alternative prior to simuation.
균열암반에서의 지하수유동 모사를 위한 추계적 연속테 모델링 기법이 개발되었다. 추계적연속체 모델은 균열수의 제한을 가지는 개별균열연결망 모델의 단점을 극복할 수 있다. 뿐만 아니라 개별균열연결망 모델에서 가능한 확률론적 해석과 전도성이 큰 균열을 통한 지하수 유동을 근접하게 모사할 수 있는 장점을 가진다. 추계적연속체 모델은 개별균열연결망 모델에 근거하여 생성된다. 개별균열연결망 모델은 일정크기의 소블록으로 나누어지며 각 소블록 투수계수의 확률밀도함수와 베리오그램 함수로부터 추계적연속체 모델에서의 투수계수의 공간적 분포를 정의할 수 있다. 이 연구에서 추계적연속체 모델과 개별균열연결망 모델의 적합성을 보여 주기 위하여 수치실험을 통하여 지하수 유동 이동시간을 계산하고 상호 비교하였다. 그리고 추계적연속체 모델은 방사성폐기물 처분장의 확률론적 안전성 펑가를 위해 필요한 지하수 유동속도의 확률분포를 제공할 수 있는 모델임을 제시할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.