• Title/Summary/Keyword: stochastic subspace decomposition

Search Result 26, Processing Time 0.018 seconds

Vibration characteristics of offshore wind turbine tower with gravity-based foundation under wave excitation

  • Nguyen, Cong-Uy;Lee, So-Young;Huynh, Thanh-Canh;Kim, Heon-Tae;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.405-420
    • /
    • 2019
  • In this study, vibration characteristics of offshore wind turbine tower (WTT) with gravity-based foundation (GBF) are identified from dynamic responses under wave-induced excitations. The following approaches are implemented to achieve the objective. Firstly, the operational modal analysis methods such as frequency domain decomposition (FDD) and stochastic subspace identification (SSI) are selected to estimate modal parameters from output-only dynamic responses. Secondly, a GBF WTT model composed of superstructure, substructure and foundation is simulated as a case study by using a structural analysis program, MIDAS FEA. Thirdly, wave pressures acting on the WTT structure are established by nonlinear regular waves which are simulated from a computational fluid software, Flow 3D. Wave-induced acceleration responses of the target structure are analyzed by applying the simulated wave pressures to the GBF WTT model. Finally, modal parameters such as natural frequencies and mode shapes are estimated from the output-only acceleration responses and compared with the results from free vibration analysis. The effect of wave height and period on modal parameter extraction is also investigated for the mode identification of the GBF WTT.

Optimal sensor placements for system identification of concrete arch dams

  • Altunisik, Ahmet Can;Sevim, Baris;Sunca, Fezayil;Okur, Fatih Yesevi
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.397-407
    • /
    • 2021
  • This paper investigates the optimal sensor placements and capabilities of this procedure for dynamic characteristics identification of arch dams. For this purpose, a prototype arch dam is constructed in laboratory conditions. Berke arch dam located on the Ceyhan River in city of Osmaniye is one of the highest arch dam constructed in Turkey is selected for field verification. The ambient vibration tests are conducted using initial candidate sensor locations at the beginning of the study. Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are used to extract experimental dynamic characteristics. Then, measurements are repeated according to optimal sensor locations of the dams. These locations are specified using the Effective Independence Method. To determine the optimal sensor locations, the target mode shape matrices which are obtained from ambient vibration tests of the selected dam with a large number of accelerometers are used. The dynamic characteristics obtained from each ambient vibrations tests are compared with each other. It is concluded that the dynamic characteristics obtained from initial measurements and those obtained from a limited number of sensors are compatible with each other. This situation indicates that optimal sensor placements determined by the Effective Independence Method are useful for dynamic characteristics identification of arch dams.

Adaptation of Modal Parameter and Elastic Modulus Estimation Method for PSC Bridge Based on Ambient Vibration (상시 진동 계측을 기반으로 한 PSC 교량의 모드계수 및 탄성계수 추정기법 적용)

  • Lee, Sung-Jin;Kim, Saang-Bum;Choi, Kyu-Yong;Lee, Tae-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.574-577
    • /
    • 2007
  • 본 논문에서는 실 시공 중인 PSC 교량에 대하여 풍하중에 의한 상시 진동 계측 자료을 기반으로, 교량의 동특성(고유진동수, 모드형상)을 추정하였으며, 이를 바탕으로 대상 교량의 탄성계수를 추정하여 정적 계측을 통한 탄성계수 결과와 비교하였다. 본 논문에서 사용한 동특성 추정 기법은, 대표적인 주파수 영역 해석 방법인 Frequency Domain Decomposition(FDD) 방법과 시간영역 해석 방법인 Stochastic Subspace Identification(SSI) 방법을 이용하였다. 탄성계수 추정은 유한요소모델과 계측 결과를 이용하여 두 개의 결과 차이가 수렴하도록 하는 반복 계산을 통해 탄성계수를 추정하였다. 우선, 탄성계수 추정 기법의 검증을 위해, 수치 해석을 통하여 그 기법을 검증하였으며, 해석 결과 정확한 탄성계수값을 추정하였으며, 이를 통해 본 논문에서 적용한 탄성계수 추정법에 대한 신뢰도를 확인하였다. 이를 바탕으로 사용된 추정 기법을 실 교량에 적용하기 위해 실제 상시 진동 계측 값을 바탕으로 실교량의 동특성 및 탄성계수를 추정하였다. FDD 및 SSI 기법을 통한 모드 해석 결과, 두 기법 모두 유사한 결과를 나타내어 FDD 및 SSI 두 방법에 대한 결과의 신뢰도를 확인 할 수 있었다. 추정 탄성계수 값은 거더 단면내 설치한 응력계 및 변형률계를 통한 계측 결과값의 범위 내에 있음을 확인하였다. 따라서 본 논문에서 적용한 교량의 상시 진동 데이터를 바탕으로 한동특성 및 탄성계수 추정법이 구조물의 대략적인 탄성계수 및 이에 따른 구조물의 전체적인 건전도를 파악하는데 도움이 되리라 생각된다.

  • PDF

Ambient vibration based structural evaluation of reinforced concrete building model

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet C.
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.335-350
    • /
    • 2018
  • This paper presents numerical modelling, modal testing, finite element model updating, linear and nonlinear earthquake behavior of a reinforced concrete building model. A 1/2 geometrically scale, two-storey, reinforced concrete frame model with raft base were constructed, tested and analyzed. Modal testing on the model using ambient vibrations is performed to illustrate the dynamic characteristics experimentally. Finite element model of the structure is developed by ANSYS software and dynamic characteristics such as natural frequencies, mode shapes and damping ratios are calculated numerically. The enhanced frequency domain decomposition method and the stochastic subspace identification method are used for identifying dynamic characteristics experimentally and such values are used to update the finite element models. Different parameters of the model are calibrated using manual tuning process to minimize the differences between the numerically calculated and experimentally measured dynamic characteristics. The maximum difference between the measured and numerically calculated frequencies is reduced from 28.47% to 4.75% with the model updating. To determine the effects of the finite element model updating on the earthquake behavior, linear and nonlinear earthquake analyses are performed using 1992 Erzincan earthquake record, before and after model updating. After model updating, the maximum differences in the displacements and stresses were obtained as 29% and 25% for the linear earthquake analysis and 28% and 47% for the nonlinear earthquake analysis compared with that obtained from initial earthquake results before model updating. These differences state that finite element model updating provides a significant influence on linear and especially nonlinear earthquake behavior of buildings.

Ambient vibration testing of Berta Highway Bridge with post-tension tendons

  • Kudu, Fatma Nur;Bayraktar, Alemdar;Bakir, Pelin Gundes;Turker, Temel;Altunisik, Ahmet Can
    • Steel and Composite Structures
    • /
    • v.16 no.1
    • /
    • pp.21-44
    • /
    • 2014
  • The aim of this study is to determine the dynamic characteristics of long reinforced concrete highway bridges with post-tension tendons using analytical and experimental methods. It is known that the deck length and height of bridges are affected the dynamic characteristics considerably. For this purpose, Berta Bridge constructed in deep valley, in Artvin, Turkey, is selected as an application. The Bridge has two piers with height of 109.245 m and 85.193 m, and the total length of deck is 340.0 m. Analytical and experimental studies are carried out on Berta Bridge which was built in accordance with the balanced cantilever method. Finite Element Method (FEM) and Operational Modal Analysis (OMA) which considers ambient vibration data were used in analytical and experimental studies, respectively. Finite element model of the bridge is created by using SAP2000 program to obtain analytical dynamic characteristics such as the natural frequencies and mode shapes. The ambient vibration tests are performed using Operational Modal Analysis under wind and human loads. Enhanced Frequency Domain Decomposition (EFDD) and Stochastic Subspace Identification (SSI) methods are used to obtain experimental dynamic characteristics like natural frequencies, mode shapes and damping ratios. At the end of the study, analytical and experimental dynamic characteristic are compared with each other and the finite element model of the bridge was updated considering the material properties and boundary conditions. It is emphasized that Operational Modal Analysis method based on the ambient vibrations can be used safely to determine the dynamic characteristics, to update the finite element models, and to monitor the structural health of long reinforced concrete highway bridges constructed with the balanced cantilever method.

Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses

  • Cho, Soojin;Jo, Hongki;Jang, Shinae;Park, Jongwoong;Jung, Hyung-Jo;Yun, Chung-Bang;Spencer, Billie F. Jr.;Seo, Ju-Won
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.461-480
    • /
    • 2010
  • This paper analyses the data collected from the $2^{nd}$ Jindo Bridge, a cable-stayed bridge in Korea that is a structural health monitoring (SHM) international test bed for advanced wireless smart sensors network (WSSN) technology. The SHM system consists of a total of 70 wireless smart sensor nodes deployed underneath of the deck, on the pylons, and on the cables to capture the vibration of the bridge excited by traffic and environmental loadings. Analysis of the data is performed in both the time and frequency domains. Modal properties of the bridge are identified using the frequency domain decomposition and the stochastic subspace identification methods based on the output-only measurements, and the results are compared with those obtained from a detailed finite element model. Tension forces for the 10 instrumented stay cables are also estimated from the ambient acceleration data and compared both with those from the initial design and with those obtained during two previous regular inspections. The results of the data analyses demonstrate that the WSSN-based SHM system performs effectively for this cable-stayed bridge, giving direct access to the physical status of the bridge.