• Title/Summary/Keyword: stochastic search technique

Search Result 33, Processing Time 0.019 seconds

A Novel Road Segmentation Technique from Orthophotos Using Deep Convolutional Autoencoders

  • Sameen, Maher Ibrahim;Pradhan, Biswajeet
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.423-436
    • /
    • 2017
  • This paper presents a deep learning-based road segmentation framework from very high-resolution orthophotos. The proposed method uses Deep Convolutional Autoencoders for end-to-end mapping of orthophotos to road segmentations. In addition, a set of post-processing steps were applied to make the model outputs GIS-ready data that could be useful for various applications. The optimization of the model's parameters is explained which was conducted via grid search method. The model was trained and implemented in Keras, a high-level deep learning framework run on top of Tensorflow. The results show that the proposed model with the best-obtained hyperparameters could segment road objects from orthophotos at an average accuracy of 88.5%. The results of optimization revealed that the best optimization algorithm and activation function for the studied task are Stochastic Gradient Descent (SGD) and Exponential Linear Unit (ELU), respectively. In addition, the best numbers of convolutional filters were found to be 8 for the first and second layers and 128 for the third and fourth layers of the proposed network architecture. Moreover, the analysis on the time complexity of the model showed that the model could be trained in 4 hours and 50 minutes on 1024 high-resolution images of size $106{\times}106pixels$, and segment road objects from similar size and resolution images in around 14 minutes. The results show that the deep learning models such as Convolutional Autoencoders could be a best alternative to traditional machine learning models for road segmentation from aerial photographs.

Research Trends of Ergonomics in Occupational Safety and Health through MEDLINE Search: Focus on Abstract Word Modeling using Word Embedding (MEDLINE 검색을 통한 산업안전보건 분야에서의 인간공학 연구동향 : 워드임베딩을 활용한 초록 단어 모델링을 중심으로)

  • Kim, Jun Hee;Hwang, Ui Jae;Ahn, Sun Hee;Gwak, Gyeong Tae;Jung, Sung Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.61-70
    • /
    • 2021
  • This study aimed to analyze the research trends of the abstract data of ergonomic studies registered in MEDLINE, a medical bibliographic database, using word embedding. Medical-related ergonomic studies mainly focus on work-related musculoskeletal disorders, and there are no studies on the analysis of words as data using natural language processing techniques, such as word embedding. In this study, the abstract data of ergonomic studies were extracted with a program written with selenium and BeutifulSoup modules using python. The word embedding of the abstract data was performed using the word2vec model, after which the data found in the abstract were vectorized. The vectorized data were visualized in two dimensions using t-Distributed Stochastic Neighbor Embedding (t-SNE). The word "ergonomics" and ten of the most frequently used words in the abstract were selected as keywords. The results revealed that the most frequently used words in the abstract of ergonomics studies include "use", "work", and "task". In addition, the t-SNE technique revealed that words, such as "workplace", "design", and "engineering," exhibited the highest relevance to ergonomics. The keywords observed in the abstract of ergonomic studies using t-SNE were classified into four groups. Ergonomics studies registered with MEDLINE have investigated the risk factors associated with workers performing an operation or task using tools, and in this study, ergonomics studies were identified by the relationship between keywords using word embedding. The results of this study will provide useful and diverse insights on future research direction on ergonomic studies.

A Clustering Technique to Minimize Energy Consumption of Sensor networks by using Enhanced Genetic Algorithm (진보된 유전자 알고리즘 이용하여 센서 네트워크의 에너지 소모를 최소화하는 클러스터링 기법)

  • Seo, Hyun-Sik;Oh, Se-Jin;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.27-37
    • /
    • 2009
  • Sensor nodes forming a sensor network have limited energy capacity such as small batteries and when these nodes are placed in a specific field, it is important to research minimizing sensor nodes' energy consumption because of difficulty in supplying additional energy for the sensor nodes. Clustering has been in the limelight as one of efficient techniques to reduce sensor nodes' energy consumption in sensor networks. However, energy saving results can vary greatly depending on election of cluster heads, the number and size of clusters and the distance among the sensor nodes. /This research has an aim to find the optimal set of clusters which can reduce sensor nodes' energy consumption. We use a Genetic Algorithm(GA), a stochastic search technique used in computing, to find optimal solutions. GA performs searching through evolution processes to find optimal clusters in terms of energy efficiency. Our results show that GA is more efficient than LEACH which is a clustering algorithm without evolution processes. The two-dimensional GA (2D-GA) proposed in this research can perform more efficient gene evolution than one-dimensional GA(1D-GA)by giving unique location information to each node existing in chromosomes. As a result, the 2D-GA can find rapidly and effectively optimal clusters to maximize lifetime of the sensor networks.