• Title/Summary/Keyword: stochastic optimization algorithm

Search Result 189, Processing Time 0.023 seconds

Calibration of the Ridge Regression Model with the Genetic Algorithm:Study on the Regional Flood Frequency Analysis (유전알고리즘을 이용한 능형회귀모형의 검정 : 빈도별 홍수량의 지역분석을 대상으로)

  • Seong, Gi-Won
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.1
    • /
    • pp.59-69
    • /
    • 1998
  • A regression model with basin physiographic characteristics as independent variables was calibrated for regional flood frequency analysis. In case that high correlations existing among the independent variables the ridge regression has been known to have capability of overcoming the problems of multicollinearity. To optimize the ridge regression model the cost function including regularization parameter must be minimized. In this research the genetic algorithm was applied on this optimization problem. The genetic algorithm is a stochastic search method that mimic the metaphor of natural biological heredity. Using this method the regression model could have optimized and stable weights of variables.

  • PDF

Optimal Estimation of Rock Mass Properties Using Genetic Algorithm (유전알고리즘을 이용한 암반 물성의 최적 평가에 관한 연구)

  • Hong Changwoo;Jeon Seokwon
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.129-136
    • /
    • 2005
  • This paper describes the implementation of rock mass rating evaluation based on genetic algorithm(GA) and conditional simulation technique to estimate RMR in the area without sufficient borehole data RMR were estimated by GA and conditional simulation technique with reflecting distribution feature and spatial correlation. And RMR determined by GA were compared with the results from kriging. Through the analysis of the results from 30 simulations, the uncertainty of estimation could be quantified.

Vibration-based identification of rotating blades using Rodrigues' rotation formula from a 3-D measurement

  • Loh, Chin-Hsiung;Huang, Yu-Ting;Hsiung, Wan-Ying;Yang, Yuan-Sen;Loh, Kenneth J.
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.677-691
    • /
    • 2015
  • In this study, the geometrical setup of a turbine blade is tracked. A research-scale rotating turbine blade system is setup with a single 3-axes accelerometer mounted on one of the blades. The turbine system is rotated by a controlled motor. The tilt and rolling angles of the rotating blade under operating conditions are determined from the response measurement of the single accelerometer. Data acquisition is achieved using a prototype wireless sensing system. First, the Rodrigues' rotation formula and an optimization algorithm are used to track the blade rolling angle and pitching angles of the turbine blade system. In addition, the blade flapwise natural frequency is identified by removing the rotation-related response induced by gravity and centrifuge force. To verify the result of calculations, a covariance-driven stochastic subspace identification method (SSI-COV) is applied to the vibration measurements of the blades to determine the system natural frequencies. It is thus proven that by using a single sensor and through a series of coordinate transformations and the Rodrigues' rotation formula, the geometrical setup of the blade can be tracked and the blade flapwise vibration frequency can be determined successfully.

A Channel Management Technique using Neural Networks in Wireless Networks (신경망을 이용한 무선망에서의 채널 관리 기법)

  • Ro Cheul-Woo;Kim Kyung-Min;Lee Kwang-Eui
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.1032-1037
    • /
    • 2006
  • The channel is one of the precious and limited resources in wireless networks. There are many researches on the channel management. Recently, the optimization problem of guard channels has been an important issue. In this paper, we propose an intelligent channel management technique based on the neural networks. An SRN channel allocation model is developed to generate the learning data for the neural networks and the performance analysis of system. In the proposed technique, the neural network is trained to generate optimal guard channel number g, using backpropagation supervised learning algorithm. The optimal g is computed using the neural network and compared to the g computed by the SRM model. The numerical results show that the difference between the value of 8 by backpropagation and that value by SRM model is ignorable.

Privacy-Preserving Deep Learning using Collaborative Learning of Neural Network Model

  • Hye-Kyeong Ko
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.56-66
    • /
    • 2023
  • The goal of deep learning is to extract complex features from multidimensional data use the features to create models that connect input and output. Deep learning is a process of learning nonlinear features and functions from complex data, and the user data that is employed to train deep learning models has become the focus of privacy concerns. Companies that collect user's sensitive personal information, such as users' images and voices, own this data for indefinite period of times. Users cannot delete their personal information, and they cannot limit the purposes for which the data is used. The study has designed a deep learning method that employs privacy protection technology that uses distributed collaborative learning so that multiple participants can use neural network models collaboratively without sharing the input datasets. To prevent direct leaks of personal information, participants are not shown the training datasets during the model training process, unlike traditional deep learning so that the personal information in the data can be protected. The study used a method that can selectively share subsets via an optimization algorithm that is based on modified distributed stochastic gradient descent, and the result showed that it was possible to learn with improved learning accuracy while protecting personal information.

Optimal Design of Municipal Water Distribution System (관수로 시스템의 최적설계)

  • Ahn, Tae Jin;Park, Jung Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1375-1383
    • /
    • 1994
  • The water distribution system problem consists of finding a minimum cost system design subject to hydraulic and operational constraints. Since the municipal water distribution system problem is nonconvex with multiple local minima, classical optimization methods find a local optimum. An outer flow search - inner optimization procedure is proposed for choosing a better local minimum for the water distribution systems. The pipe network is judiciously subjected to the outer search scheme which chooses alternative flow configurations to find an optimal flow division among pipes. Because the problem is nonconvex, a global search scheme called Stochastic Probing method is employed to permit a local optimum seeking method to migrate among various local minima. A local minimizer is employed for the design of least cost diameters for pipes in the network. The algorithm can also be employed for optimal design of parallel expansion of existing networks. In this paper one municipal water distribution system is considered. The optimal solutions thus found have significantly smaller costs than the ones reported previously by other researchers.

  • PDF

Layout optimization of wireless sensor networks for structural health monitoring

  • Jalsan, Khash-Erdene;Soman, Rohan N.;Flouri, Kallirroi;Kyriakides, Marios A.;Feltrin, Glauco;Onoufriou, Toula
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.39-54
    • /
    • 2014
  • Node layout optimization of structural wireless systems is investigated as a means to prolong the network lifetime without, if possible, compromising information quality of the measurement data. The trade-off between these antagonistic objectives is studied within a multi-objective layout optimization framework. A Genetic Algorithm is adopted to obtain a set of Pareto-optimal solutions from which the end user can select the final layout. The information quality of the measurement data collected from a heterogeneous WSN is quantified from the placement quality indicators of strain and acceleration sensors. The network lifetime or equivalently the network energy consumption is estimated through WSN simulation that provides realistic results by capturing the dynamics of the wireless communication protocols. A layout optimization study of a monitoring system on the Great Belt Bridge is conducted to evaluate the proposed approach. The placement quality of strain gauges and accelerometers is obtained as a ratio of the Modal Clarity Index and Mode Shape Expansion values that are computed from a Finite Element model of the monitored bridge. To estimate the energy consumption of the WSN platform in a realistic scenario, we use a discrete-event simulator with stochastic communication models. Finally, we compare the optimization results with those obtained in a previous work where the network energy consumption is obtained via deterministic communication models.

OPTIMIZING QUALITY AND COST OF METAL CURTAIN WALL USING MULTI-OBJECTIVE GENETIC ALGORITHM AND QUALITY FUNCTION DEPLOYMENT

  • Tae-Kyung Lim;Chang-Baek Son;Jae-Jin Son;Dong-Eun Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.409-416
    • /
    • 2009
  • This paper presents a tool called Quality-Cost optimization system (QCOS), which integrates Multi-Objective Genetic Algorithm (MOGA) and Quality Function Deployment (QFD), for tradeoff between quality and cost of the unitized metal curtain-wall unit. A construction owner as the external customer pursues to maximize the quality of the curtain-wall unit. However, the contractor as the internal customer pursues to minimize the cost involved in designing, manufacturing and installing the curtain-wall unit. It is crucial for project manager to find the tradeoff point which satisfies the conflicting interests pursued by the both parties. The system would be beneficial to establish a quality plan satisfying the both parties. Survey questionnaires were administered to the construction owner who has an experience of curtain-wall project, the architects who are the independent assessor, and the contractors who were involved in curtain-wall design and installation. The Customer Requirements (CRs) and their importance weights, the relationship between CRs and Technical Attributes (TAs) consisting of a curtain-wall unit, and the cost ratios of each components consisting curtain-wall unit are obtained from the three groups mentioned previously. The data obtained from the surveys were used as the QFD input to compute the Owner Satisfaction (OS) and Contractor Satisfaction (CS). MOGA is applied to optimize resource allocation under limited budget when multi-objectives, OS and CS, are pursued at the same time. The deterministic multi-objective optimization method using MOGA and QFD is extended to stochastic model to better deal with the uncertainties of QFD input and the variability of QFD output. A case study demonstrates the system and verifies the system conformance.

  • PDF

Optimum Structural Design of Tankers Using Multi-objective Optimization Technique (다목적함수 최적화기법을 이용한 유조선의 최적구조설계)

  • 신상훈;장창두;송하철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.591-598
    • /
    • 2002
  • In the ship structural design, the material cost of hull weight and the overall cost of construction processes should be minimized considering safety and reliability. In the past, minimum weight design has been mainly focused on reducing material cost and increasing dead weight reflect the interests of a ship's owner. But, in the past experience, the minimum weight design has been inevitably lead to increasing the construction cost. Therefore, it is necessary that the designer of ship structure should consider both structural weight and construction cost. In this point of view, multi-objective optimization technique is proposed to design the ship structure in this study. According to the proposed algorithm, the results of optimization were compared to the structural design of actual VLCC(Very Large Crude Oil Carrier). Objective functions were weight cost and construction cost of VLCC, and ES(Evolution Strategies), one of the stochastic search methods, was used as an optimization solver. For the scantlings of members and the estimations of objectives, classification rule was adopted for the longitudinal members, and the direct calculation method, GSDM(Generalized Slope Deflection Method), lot the transverse members. To choose the most economical design point among the results of Pareto optimal set, RFR(Required Freight Rate) was evaluated for each Pareto point, and compared to actual ship.

A study on the optimal sizing and topology design for Truss/Beam structures using a genetic algorithm (유전자 알고리듬을 이용한 트러스/보 구조물의 기하학적 치수 및 토폴로지 최적설계에 관한 연구)

  • 박종권;성활경
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.89-97
    • /
    • 1997
  • A genetic algorithm (GA) is a stochastic direct search strategy that mimics the process of genetic evolution. The GA applied herein works on a population of structural designs at any one time, and uses a structured information exchange based on the principles of natural selection and wurvival of the fittest to recombine the most desirable features of the designs over a sequence of generations until the process converges to a "maximum fitness" design. Principles of genetics are adapted into a search procedure for structural optimization. The methods consist of three genetics operations mainly named selection, cross- over and mutation. In this study, a method of finding the optimum topology of truss/beam structure is pro- posed by using the GA. In order to use GA in the optimum topology problem, chromosomes to FEM elements are assigned, and a penalty function is used to include constraints into fitness function. The results show that the GA has the potential to be an effective tool for the optimal design of structures accounting for sizing, geometrical and topological variables.variables.

  • PDF