• 제목/요약/키워드: stochastic mechanics fuzzy systems

검색결과 2건 처리시간 0.014초

Stochastic intelligent GA controller design for active TMD shear building

  • Chen, Z.Y.;Peng, Sheng-Hsiang;Wang, Ruei-Yuan;Meng, Yahui;Fu, Qiuli;Chen, Timothy
    • Structural Engineering and Mechanics
    • /
    • 제81권1호
    • /
    • pp.51-57
    • /
    • 2022
  • The problem of optimal stochastic GA control of the system with uncertain parameters and unsure noise covariates is studied. First, without knowing the explicit form of the dynamic system, the open-loop determinism problem with path optimization is solved. Next, Gaussian linear quadratic controllers (LQG) are designed for linear systems that depend on the nominal path. A robust genetic neural network (NN) fuzzy controller is synthesized, which consists of a Kalman filter and an optimal controller to assure the asymptotic stability of the discrete control system. A simulation is performed to prove the suitability and performance of the recommended algorithm. The results indicated that the recommended method is a feasible method to improve the performance of active tuned mass damper (ATMD) shear buildings under random earthquake disturbances.

A novel grey TMD control for structures subjected to earthquakes

  • Z.Y., Chen;Ruei-Yuan, Wang;Yahui, Meng;Timothy, Chen
    • Earthquakes and Structures
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2023
  • A model for calculating structure interacted mechanics is proposed. A structural interaction model and controller design based on tuned mass damping (TMD) was developed to control the induced vibration. A key point is to introduce a new analytical model to evaluate the properties of the TMD that recognizes the motion-dependent nonlinear response observed in the simulations. Aiming at the problem of increased current harmonics and low efficiency of permanent magnet synchronous motors for electric vehicles due to dead time effect, a dead time compensation method based on neural network filter and current polarity detection is proposed. Firstly, the DC components and the higher harmonic components of the motor currents are obtained by virtue of what the neural network filters and the extracted harmonic currents are adjusted to the required compensation voltages by virtue of what the neural network filters. Then, the extracted DC components are used for current polarity dead time compensation control to avert the false compensation when currents approach zero. The neural network filter method extracts the required compensation voltages from the speed component and the current polarity detection compensation method obtains the required compensation voltages by discriminating the current polarity. The combination of the two methods can more precisely compensate the dead time effect of the control system to improve the control performance. Furthermore, based on the relaxed method, the intelligent approach of stability criterion can be regulated appropriately and the artificial TMD was found to be effective in reducing cross-wind vibrations.