• Title/Summary/Keyword: stochastic gradient descent method

Search Result 22, Processing Time 0.02 seconds

A Hybrid Multi-Level Feature Selection Framework for prediction of Chronic Disease

  • G.S. Raghavendra;Shanthi Mahesh;M.V.P. Chandrasekhara Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.101-106
    • /
    • 2023
  • Chronic illnesses are among the most common serious problems affecting human health. Early diagnosis of chronic diseases can assist to avoid or mitigate their consequences, potentially decreasing mortality rates. Using machine learning algorithms to identify risk factors is an exciting strategy. The issue with existing feature selection approaches is that each method provides a distinct set of properties that affect model correctness, and present methods cannot perform well on huge multidimensional datasets. We would like to introduce a novel model that contains a feature selection approach that selects optimal characteristics from big multidimensional data sets to provide reliable predictions of chronic illnesses without sacrificing data uniqueness.[1] To ensure the success of our proposed model, we employed balanced classes by employing hybrid balanced class sampling methods on the original dataset, as well as methods for data pre-processing and data transformation, to provide credible data for the training model. We ran and assessed our model on datasets with binary and multivalued classifications. We have used multiple datasets (Parkinson, arrythmia, breast cancer, kidney, diabetes). Suitable features are selected by using the Hybrid feature model consists of Lassocv, decision tree, random forest, gradient boosting,Adaboost, stochastic gradient descent and done voting of attributes which are common output from these methods.Accuracy of original dataset before applying framework is recorded and evaluated against reduced data set of attributes accuracy. The results are shown separately to provide comparisons. Based on the result analysis, we can conclude that our proposed model produced the highest accuracy on multi valued class datasets than on binary class attributes.[1]

Hybrid Atmospheric Compensation in Free-Space Optical Communication

  • Wang, Tingting;Zhao, Xiaohui
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • Since the direct-gradient (DG) method uses the Shack-Hartmann wave front sensor (SH-WFS), based on the phase-conjugation principle, for atmospheric compensation in free-space optical (FSO) communication, it cannot effectively correct high-order aberrations. While the stochastic parallel gradient descent (SPGD) can compensate the distorted wave front, it requires more calculations, which is sometimes undesirable for an FSO system. A hybrid compensation (HC) method is proposed by properly using the DG method and SPGD algorithm to improve the performance of FSO communication. Simulations show that this method can well compensate wave-front aberrations and upgrade the coupling efficiency with few computations, preferable correction results, and rapid convergence rate.

Modified Bayesian personalized ranking for non-binary implicit feedback (비이진 내재적 피드백 자료를 위한 변형된 베이지안 개인화 순위 방법)

  • Kim, Dongwoo;Lee, Eun Ryung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.1015-1025
    • /
    • 2017
  • Bayesian personalized ranking (BPR) is a state-of-the-art recommendation system techniques for implicit feedback data. Unfortunately, there might be a loss of information because the BPR model considers only the binary transformation of implicit feedback that is non-binary data in most cases. We propose a modified BPR method using a level of confidence based on the size or strength of implicit feedback to overcome this limitation. The proposed method is useful because it still has a structure of interpretable models for underlying personalized ranking i.e., personal pairwise preferences as in the BPR and that it is capable to reflect a numerical size or the strength of implicit feedback. We propose a computation algorithm based on stochastic gradient descent for the numerical implementation of our proposal. Furthermore, we also show the usefulness of our proposed method compared to ordinary BPR via an analysis of steam video games data.

Privacy Preserving Techniques for Deep Learning in Multi-Party System (멀티 파티 시스템에서 딥러닝을 위한 프라이버시 보존 기술)

  • Hye-Kyeong Ko
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.647-654
    • /
    • 2023
  • Deep Learning is a useful method for classifying and recognizing complex data such as images and text, and the accuracy of the deep learning method is the basis for making artificial intelligence-based services on the Internet useful. However, the vast amount of user da vita used for training in deep learning has led to privacy violation problems, and it is worried that companies that have collected personal and sensitive data of users, such as photographs and voices, own the data indefinitely. Users cannot delete their data and cannot limit the purpose of use. For example, data owners such as medical institutions that want to apply deep learning technology to patients' medical records cannot share patient data because of privacy and confidentiality issues, making it difficult to benefit from deep learning technology. In this paper, we have designed a privacy preservation technique-applied deep learning technique that allows multiple workers to use a neural network model jointly, without sharing input datasets, in multi-party system. We proposed a method that can selectively share small subsets using an optimization algorithm based on modified stochastic gradient descent, confirming that it could facilitate training with increased learning accuracy while protecting private information.

Searching a global optimum by stochastic perturbation in error back-propagation algorithm (오류 역전파 학습에서 확률적 가중치 교란에 의한 전역적 최적해의 탐색)

  • 김삼근;민창우;김명원
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.3
    • /
    • pp.79-89
    • /
    • 1998
  • The Error Back-Propagation(EBP) algorithm is widely applied to train a multi-layer perceptron, which is a neural network model frequently used to solve complex problems such as pattern recognition, adaptive control, and global optimization. However, the EBP is basically a gradient descent method, which may get stuck in a local minimum, leading to failure in finding the globally optimal solution. Moreover, a multi-layer perceptron suffers from locking a systematic determination of the network structure appropriate for a given problem. It is usually the case to determine the number of hidden nodes by trial and error. In this paper, we propose a new algorithm to efficiently train a multi-layer perceptron. OUr algorithm uses stochastic perturbation in the weight space to effectively escape from local minima in multi-layer perceptron learning. Stochastic perturbation probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the EGP learning gets stuck to it. Addition of new hidden nodes also can be viewed asa special case of stochastic perturbation. Using stochastic perturbation we can solve the local minima problem and the network structure design in a unified way. The results of our experiments with several benchmark test problems including theparity problem, the two-spirals problem, andthe credit-screening data show that our algorithm is very efficient.

  • PDF

A Study on the Development and Evaluation of Personalized Book Recommendation Systems in University Libraries Based on Individual Loan Records (대출 기록에 기초한 대학 도서관 도서 개인화 추천시스템 개발 및 평가에 관한 연구)

  • Hong, Yeonkyoung;Jeon, Seoyoung;Choi, Jaeyoung;Yang, Heeyoon;Han, Chaeeun;Zhu, Yongjun
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.2
    • /
    • pp.113-127
    • /
    • 2021
  • The purpose of this study is to propose a personalized book recommendation system to promote the use of university libraries. In particular, unlike many recommended services that are based on existing users' preferences, this study proposes a method that derive evaluation metrics using individual users' book rental history and tendencies, which can be an effective alternative when users' preferences are not available. This study suggests models using two matrix decomposition methods: Singular Value Decomposition(SVD) and Stochastic Gradient Descent(SGD) that recommend books to users in a way that yields an expected preference score for books that have not yet been read by them. In addition, the model was implemented using a user-based collaborative filtering algorithm by referring to book rental history of other users that have high similarities with the target user. Finally, user evaluation was conducted for the three models using the derived evaluation metrics. Each of the three models recommended five books to users who can either accept or reject the recommendations as the way to evaluate the models.

Mean Life Assessment and Prediction of the Failure Probability of Combustion Turbine Generating Unit with Data Analytic Method Based on Aging Failure Data (통계적 분석방법을 이용한 복합화력 발전설비의 평균수명 계산 및 고장확률 예측)

  • Lee, Sung-Hoon;Lee, Seung-Hyuk;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.10
    • /
    • pp.480-486
    • /
    • 2005
  • This paper proposes a method to consider an aging failure probability and survival probability of power system components, though only aging failure probability has been considered in existing mean life calculation. The estimates of the mean and its standard deviation is calculated by using Weibull distribution, and each estimated parameters is obtained from Data Analytic Method (Type H Censoring). The parameter estimation using Data Analytic Method is simpler and faster than the traditional calculation method using gradient descent algorithm. This paper shows calculation procedure of the mean life and its standard deviation by the proposed method and illustrates that the estimated results are close enough to real historical data of combustion turbine generating units in Korean systems. Also, this paper shows the calculation procedures of a probabilistic failure prediction through a stochastic data analysis. Consequently, the proposed methods would be likely to permit that the new deregulated environment forces utilities to reduce overall costs while maintaining an are-related reliability index.

A Quick Hybrid Atmospheric-interference Compensation Method in a WFS-less Free-space Optical Communication System

  • Cui, Suying;Zhao, Xiaohui;He, Xu;Gu, Haijun
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.612-622
    • /
    • 2018
  • In wave-front-sensor-less adaptive optics (WFS-less AO) systems, the Jacopo Antonello (JA) method belongs to the model-based class and requires few iterations to achieve acceptable distortion correction. However, this method needs a lot of measurements, especially when it deals with moderate or severe aberration, which is undesired in free-space optical communication (FSOC). On the contrary, the stochastic parallel gradient descent (SPGD) algorithm only requires three time measurements in each iteration, and is widely applied in WFS-less AO systems, even though plenty of iterations are necessary. For better and faster compensation, we propose a WFS-less hybrid approach, borrowing from the JA method to compensate for low-order wave front and from the SPGD algorithm to compensate for residual low-order wave front and high-order wave front. The correction results for this proposed method are provided by simulations to show its superior performance, through comparison of both the Strehl ratio and the convergence speed of the WFS-less hybrid approach to those of the JA method and SPGD algorithm.

Development of Multi-channel Fiber Laser and Beam Alignment Method (다채널 광섬유 레이저 및 다중 빔 정렬 기술 개발)

  • Kim, Youngchan;Ryu, Daegeon;Noh, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.245-251
    • /
    • 2022
  • We have developed a multi-channel fiber laser for tiled laser beam combining and a laser output array system for multi-beam alignment. The fiber laser is a master oscillator power amplifier configuration that has a common seed, a preamplifier, and a 7-channel amplifier. The output power of each channel is more than 10 W. The laser output array system is a packed cylindrical configuration for a high fill-factor, and it has capabilities for collimation and tilt control with built-in PZT. Multi-beam alignment to a target is successfully implemented using PZT controlled with a stochastic parallel gradient descent (SPGD) algorithm.

Data Mining based Forest Fires Prediction Models using Meteorological Data (기상 데이터를 이용한 데이터 마이닝 기반의 산불 예측 모델)

  • Kim, Sam-Keun;Ahn, Jae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.521-529
    • /
    • 2020
  • Forest fires are one of the most important environmental risks that have adverse effects on many aspects of life, such as the economy, environment, and health. The early detection, quick prediction, and rapid response of forest fires can play an essential role in saving property and life from forest fire risks. For the rapid discovery of forest fires, there is a method using meteorological data obtained from local sensors installed in each area by the Meteorological Agency. Meteorological conditions (e.g., temperature, wind) influence forest fires. This study evaluated a Data Mining (DM) approach to predict the burned area of forest fires. Five DM models, e.g., Stochastic Gradient Descent (SGD), Support Vector Machines (SVM), Decision Tree (DT), Random Forests (RF), and Deep Neural Network (DNN), and four feature selection setups (using spatial, temporal, and weather attributes), were tested on recent real-world data collected from Gyeonggi-do area over the last five years. As a result of the experiment, a DNN model using only meteorological data showed the best performance. The proposed model was more effective in predicting the burned area of small forest fires, which are more frequent. This knowledge derived from the proposed prediction model is particularly useful for improving firefighting resource management.