• Title/Summary/Keyword: stochastic differential equations

Search Result 116, Processing Time 0.025 seconds

A Generalized Finite Difference Method for Solving Fokker-Planck-Kolmogorov Equations

  • Zhao, Li;Yun, Gun Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.816-826
    • /
    • 2017
  • In this paper, a generalized discretization scheme is proposed that can derive general-order finite difference equations representing the joint probability density function of dynamic response of stochastic systems. The various order of finite difference equations are applied to solutions of the Fokker-Planck-Kolmogorov (FPK) equation. The finite difference equations derived by the proposed method can greatly increase accuracy even at the tail parts of the probability density function, giving accurate reliability estimations. Compared with exact solutions and finite element solutions, the generalized finite difference method showed increasing accuracy as the order increases. With the proposed method, it is allowed to use different orders and types (i.e. forward, central or backward) of discretization in the finite difference method to solve FPK and other partial differential equations in various engineering fields having requirements of accuracy or specific boundary conditions.

A NOTE ON EXPONENTIAL ALMOST SURE STABILITY OF STOCHASTIC DIFFERENTIAL EQUATION

  • Mao, Xuerong;Song, Qingshuo;Yang, Dichuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.221-227
    • /
    • 2014
  • Our goal is to relax a sufficient condition for the exponential almost sure stability of a certain class of stochastic differential equations. Compared to the existing theory, we prove the almost sure stability, replacing Lipschitz continuity and linear growth conditions by the existence of a strong solution of the underlying stochastic differential equation. This result is extendable for the regime-switching system. An explicit example is provided for the illustration purpose.

NUMERICAL METHODS FOR SOME NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS

  • El-Borai, Mahmoud M.;El-Nadi, Khairia El-Said;Mostafa, Osama L.;Ahmed, Hamdy M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.79-90
    • /
    • 2005
  • In this paper we study the numerical solutions of the stochastic differential equations of the form $$du(x,\;t)=f(x,\;t,\;u)dt\;+\;g(x,\;t,\;u)dW(t)\;+\;\sum\limits_{|q|\leq2m}\;A_q(x,\;t)D^qu(x,\;t)dt$$ where $0\;{\leq}\;t\;{\leq}\;T,\;x\;{\in}\;R^{\nu}$, ($R^{nu}$ is the $\nu$-dimensional Euclidean space). Here $u\;{\in}\;R^n$, W(t) is an n-dimensional Brownian motion, $$f\;:\;R^{n+\nu+1}\;{\rightarrow}\;R^n,\;g\;:\;R^{n+\nu+1}\;{\rightarrow}\;R^{n{\times}n},$$, and $$A_q\;:\;R^{\nu}\;{\times}\;[0,\;T]\;{\rightarrow}\;R^{n{\times}n}$$ where ($A_q,\;|\;q\;|{\leq}\;2m$) is a family of square matrices whose elements are sufficiently smooth functions on $R^{\nu}\;{\times}\;[0,\;T]\;and\;D^q\;=\;D^{q_1}_1_{\ldots}_{\ldots}D^{q_{\nu}}_{\nu},\;D_i\;=\;{\frac{\partial}{\partial_{x_i}}}$.

  • PDF

STABILITY IN THE α-NORM FOR SOME STOCHASTIC PARTIAL FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS

  • Diop, Mamadou Abdoul;Ezzinbi, Khalil;Lo, Modou
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.149-167
    • /
    • 2019
  • In this work, we study the existence, uniqueness and stability in the ${\alpha}$-norm of solutions for some stochastic partial functional integrodifferential equations. We suppose that the linear part has an analytic resolvent operator in the sense given in Grimmer [8] and the nonlinear part satisfies a $H{\ddot{o}}lder$ type condition with respect to the ${\alpha}$-norm associated to the linear part. Firstly, we study the existence of the mild solutions. Secondly, we study the exponential stability in pth moment (p > 2). Our results are illustrated by an example. This work extends many previous results on stochastic partial functional differential equations.

FURTHER EVALUATION OF A STOCHASTIC MODEL APPLIED TO MONOENERGETIC SPACE-TIME NUCLEAR REACTOR KINETICS

  • Ha, Pham Nhu Viet;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.523-530
    • /
    • 2011
  • In a previous study, the stochastic space-dependent kinetics model (SSKM) based on the forward stochastic model in stochastic kinetics theory and the Ito stochastic differential equations was proposed for treating monoenergetic space-time nuclear reactor kinetics in one dimension. The SSKM was tested against analog Monte Carlo calculations, however, for exemplary cases of homogeneous slab reactors with only one delayed-neutron precursor group. In this paper, the SSKM is improved and evaluated with more realistic and complicated cases regarding several delayed-neutron precursor groups and heterogeneous slab reactors in which the extraneous source or reactivity can be introduced locally. Furthermore, the source level and the initial conditions will also be adjusted to investigate the trends in the variances of the neutron population and fission product levels across the reactor. The results indicate that the improved SSKM is in good agreement with the Monte Carlo method and show how the variances in population dynamics can be controlled.

Stochastic Differential Equations for Modeling of High Maneuvering Target Tracking

  • Hajiramezanali, Mohammadehsan;Fouladi, Seyyed Hamed;Ritcey, James A.;Amindavar, Hamidreza
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.849-858
    • /
    • 2013
  • In this paper, we propose a new adaptive single model to track a maneuvering target with abrupt accelerations. We utilize the stochastic differential equation to model acceleration of a maneuvering target with stochastic volatility (SV). We assume the generalized autoregressive conditional heteroscedasticity (GARCH) process as the model for the tracking procedure of the SV. In the proposed scheme, to track a high maneuvering target, we modify the Kalman filtering by introducing a new GARCH model for estimating SV. The proposed tracking algorithm operates in both the non-maneuvering and maneuvering modes, and, unlike the traditional decision-based model, the maneuver detection procedure is eliminated. Furthermore, we stress that the improved performance using the GARCH acceleration model is due to properties inherent in GARCH modeling itself that comply with maneuvering target trajectory. Moreover, the computational complexity of this model is more efficient than that of traditional methods. Finally, the effectiveness and capabilities of our proposed strategy are demonstrated and validated through Monte Carlo simulation studies.

A Stochastic Differential Equation Model for Software Reliability Assessment and Its Goodness-of-Fit

  • Shigeru Yamada;Akio Nishigaki;Kim, Mitsuhiro ura
    • International Journal of Reliability and Applications
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • Many software reliability growth models (SRGM's) based on a nonhomogeneous Poisson process (NHPP) have been proposed by many researchers. Most of the SRGM's which have been proposed up to the present treat the event of software fault-detection in the testing and operational phases as a counting process. However, if the size of the software system is large, the number of software faults detected during the testing phase becomes large, and the change of the number of faults which are detected and removed through debugging activities becomes sufficiently small compared with the initial fault content at the beginning of the testing phase. Therefore, in such a situation, we can model the software fault-detection process as a stochastic process with a continuous state space. In this paper, we propose a new software reliability growth model describing the fault-detection process by applying a mathematical technique of stochastic differential equations of an Ito type. We also compare our model with the existing SRGM's in terms of goodness-of-fit for actual data sets.

  • PDF

Design of Kalman Filter via BPF (블록펄스함수를 이용한 칼만필터설계)

  • Ahn, Doo-Soo;Lim, Yun-Sic;Lee, Sung-Hee;Lee, Myung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.667-669
    • /
    • 1995
  • This paper presents a method to design Kalman filter on continuous stochastic dynamical systems via BPFT(block pulse functions transformation). When we design Kalman filter, minimum error valiance matrix is appeared as a form of nonlinear matrix differential equations. Such equations are very difficult to obtain the solutions. Therefore, in this paper, we simply obtain the solutions of nonlinear matrix differential equations from recursive algebraic equations using BPFT. We believe that the presented method is very attractive and proper for the evaluation of Kalman gain on continuous stochastic dynamical systems.

  • PDF

A Study on the Analysis of Stochastic Dynamic System (확률적 동적계의 해석에 관한 연구)

  • Nam, S.H.;Kim, H.R.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.127-134
    • /
    • 1995
  • The dynamic characteristics of a system can be critically influenced by system uncertainty, so the dynamic system must be analyzed stochastically in consideration of system uncertainty. This study presents a generalized stochastic model of dynamic system subjected to bot external and parametric nonstationary stochastic input. And this stochastic system is analyzed by a new stochastic process closure method and moment equation method. The first moment equation is numerically evaluated by Runge-Kutta method. But the second moment equation is founded to constitute an infinite coupled set of differential equations, so this equations are numerically evaluated by cumulant neglect closure method and Runge-Kutta method. Finally the accuracy of the present method is verified by Monte Carlo simulation.

  • PDF

Solution of randomly excited stochastic differential equations with stochastic operator using spectral stochastic finite element method (SSFEM)

  • Hussein, A.;El-Tawil, M.;El-Tahan, W.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.129-152
    • /
    • 2008
  • This paper considers the solution of the stochastic differential equations (SDEs) with random operator and/or random excitation using the spectral SFEM. The random system parameters (involved in the operator) and the random excitations are modeled as second order stochastic processes defined only by their means and covariance functions. All random fields dealt with in this paper are continuous and do not have known explicit forms dependent on the spatial dimension. This fact makes the usage of the finite element (FE) analysis be difficult. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used to represent these processes to overcome this difficulty. Then, a spectral approximation for the stochastic response (solution) of the SDE is obtained based on the implementation of the concept of generalized inverse defined by the Neumann expansion. This leads to an explicit expression for the solution process as a multivariate polynomial functional of a set of uncorrelated random variables that enables us to compute the statistical moments of the solution vector. To check the validity of this method, two applications are introduced which are, randomly loaded simply supported reinforced concrete beam and reinforced concrete cantilever beam with random bending rigidity. Finally, a more general application, randomly loaded simply supported reinforced concrete beam with random bending rigidity, is presented to illustrate the method.