KSCE Journal of Civil and Environmental Engineering Research
/
v.14
no.6
/
pp.1375-1383
/
1994
The water distribution system problem consists of finding a minimum cost system design subject to hydraulic and operational constraints. Since the municipal water distribution system problem is nonconvex with multiple local minima, classical optimization methods find a local optimum. An outer flow search - inner optimization procedure is proposed for choosing a better local minimum for the water distribution systems. The pipe network is judiciously subjected to the outer search scheme which chooses alternative flow configurations to find an optimal flow division among pipes. Because the problem is nonconvex, a global search scheme called Stochastic Probing method is employed to permit a local optimum seeking method to migrate among various local minima. A local minimizer is employed for the design of least cost diameters for pipes in the network. The algorithm can also be employed for optimal design of parallel expansion of existing networks. In this paper one municipal water distribution system is considered. The optimal solutions thus found have significantly smaller costs than the ones reported previously by other researchers.
This paper describes a new stochastic heuristic algorithm in engineering problem optimization especially in power system applications. An improved particle swarm optimization (PSO) called adaptive particle swarm optimization (APSO), mixed with simulated annealing (SA), is introduced and referred to as APSO-SA. This algorithm uses a novel PSO algorithm (APSO) to increase the convergence rate and incorporate the ability of SA to avoid being trapped in a local optimum. The APSO-SA algorithm efficiency is verified using some benchmark functions. This paper presents the application of APSO-SA to find the optimal location, type and size of flexible AC transmission system devices. Two types of FACTS devices, the thyristor controlled series capacitor (TCSC) and the static VAR compensator (SVC), are considered. The main objectives of the presented method are increasing the voltage stability index and over load factor, decreasing the cost of investment and total real power losses in the power system. In this regard, two cases are considered: single-type devices (same type of FACTS devices) and multi-type devices (combination of TCSC, SVC). Using the proposed method, the locations, type and sizes of FACTS devices are obtained to reach the optimal objective function. The APSO-SA is used to solve the above non.linear programming optimization problem for better accuracy and fast convergence and its results are compared with results of conventional PSO. The presented method expands the search space, improves performance and accelerates to the speed convergence, in comparison with the conventional PSO algorithm. The optimization results are compared with the standard PSO method. This comparison confirms the efficiency and validity of the proposed method. The proposed approach is examined and tested on IEEE 14 bus systems by MATLAB software. Numerical results demonstrate that the APSO-SA is fast and has a much lower computational cost.
For the efficient stochastic optimization of steel structures for which a large number of analyses is required, artificial neural networks,which have emerged as a powerful tool that could have been used to replace time-consuming procedures in many scientific or engineering applications, are applied. They are utilized for the solution of the equilibrium equations resulting from the application of the finite element method in connection with the reanalysis type of problem, for which a large number of finite element analyses are required in this study. As such, the use of artificial neural networks to predict finite element analysis outputs simplifies and facilitates the performance of the stochastic optimal design of structural systems where a trained neural network is used to replace the structural reanalysis phase. Moreover, to improve efficiency of used artificial neural networks, genetic algorithm is utilized. The stochastic optimizer used in this study is an algorithm based on the evolution theory. The efficiency of the proposed procedure is examined in problems with both volume (weight) functions and real-world cost functions
Journal of Korean Society of Industrial and Systems Engineering
/
v.39
no.4
/
pp.137-146
/
2016
In recent years, business environment is faced with multi uncertainty that have not been suffered in the past. As supply chain is getting expanded and longer, the flow of information, material and production is also being complicated. It is well known that development service industry using application software has various uncertainty in random events such as supply and demand fluctuation of developer's capcity, project effective date after winning a contract, manpower cost (or revenue), subcontract cost (or purchase), and overrun due to developer's skill-level. This study intends to social contribution through attempts to optimize enterprise's goal by supply chain management platform to balance demand and supply and stochastic programming which is basically applied in order to solve uncertainty considering economical and operational risk at solution supplier. In Particular, this study emphasizes to determine allocation of internal and external manpower of developers using S&OP (Sales & Operations Planning) as monthly resource input has constraint on resource's capability that shared in industry or task. This study is to verify how Stochastic Programming such as Markowitz's MV (Mean Variance) model or 2-Stage Recourse Model is flexible and efficient than Deterministic Programming in software enterprise field by experiment with process and data from service industry which is manufacturing software and performing projects. In addition, this study is also to analysis how profit and labor input plan according to scope of uncertainty is changed based on Pareto Optimal, then lastly it is to enumerate limitation of the study extracted drawback which can be happened in real business environment and to contribute direction in future research considering another applicable methodology.
The assembly line is one of the typical process hard to analyze with mathematical methods including even stochastic approaches, because it includes many manual operations varying drastically depending on operators' skills. In this paper, we suggest the simulation optimization method to design the optimal assembly line of a gas oven. To achieve the optimal design, firstly, we modeled the real gas oven assembly line with actual data, such as assembly procedures, operation rules, and other input parameters and so on. Secondly, we build some alternatives to enhance the line performance based on business rules and other parameters. The DOE(Design Of Experiment) techniques were used for testing alternatives under various situations. Each alternatives performed optimization process with evolution strategy; one of the GA(Genetic Algorithm) techniques. As a result, we can make about 7% of throughputs up with the same time and cost. By this process, we expect the assembly line can obtain the solution compatible with their own problems.
Journal of the military operations research society of Korea
/
v.29
no.2
/
pp.100-110
/
2003
Equipment replacement policy may not be defined with certainty, because physical states of any technological system may not be determined with foresight. This paper presents Markov Decision Process(MDP) model for army equipment which is subject to the uncertainty of deterioration and ultimately to failure. The components of the MDP model is defined as follows: ⅰ) state is identified as the age of the equipment, ⅱ) actions are classified as 'keep' and 'replace', ⅲ) cost is defined as the expected cost per unit time associated with 'keep' and 'replace' actions, ⅳ) transition probability is derived from Weibull distribution. Using the MDP model, we can determine the optimal replacement policy for an army equipment replacement problem.
Kim, Hung-Jun;Shin, Jun-Seok;Kim, Jin-O;Kim, Hyung-Chul
Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
/
2007.05a
/
pp.328-333
/
2007
Traditional maintenance planning is based on a constant maintenance interval for equipment life. In order to consider economic aspect for tm based preventive maintenance, preventive maintenance is desirable to be scheduled by RCM(Reliability-Centered Maintenance) evaluation. The main objective of RCM is to reduce the maintenance cost, by focusing on the most important functions of the system and avoiding or removing maintenance actions that are not strictly necessary. So, Markov state model is utilized considering stochastic state in RCM In this paper, a Markov state model much can be used for scheduling and optimization of maintenance is presented. The deterioration process of system condition is modeled by the stepwise Markov model in detail. Also, because the system is not continuously monitored, the inspection is considered. In case study, simulation results about RCM will be shown using the real historical data of combustion turbine generating unit in Korean power systems.
Journal of the Korean Institute of Intelligent Systems
/
v.7
no.2
/
pp.25-33
/
1997
A DEDS is a system whose states change in response to the occurence of events from a predefined event set. In this paper, we consider the optimal control and reasoning problem for Discrete Event Systems(DES) in the Temporal Logic Framework(TEL) which have been recnetly defined. The TLE is enhanced with objective functions(event cost indices) and a measurement space is alos deined. A sequence of event which drive the system form a give initial state to a given final state is generated by minimizing a cost functioin index. Our research goal is the reasoning of optimal trajectory and the design of the optimal controller for DESs. This procedure could be guided by the heuristic search methods. For the heuristic search, we suggested the Stochastic Ruler algorithm, instead of the A algorithm with difficulties as following ; the uniqueness of solutions, the computational complexity and how to select a heuristic function. This SR algorithm is used for solving the optimal problem. An example is shown to illustrate our results.
A river water quality management model was made by Dynamic programming. This model optimizes the wastewater treatment cost of the application area, and computed water quality with it must meet the water quality standard. And this model takes into consideration tributary input, wastewater treatment plant effluent, withdrawls for several purposes. Modified Streeter-Phelps equation was used to calculate BOD and DO. Optimization problem was solved with particular exceedance probability flow, and the water quality of each point was calculated with the decided treatment efficiencies. At that time, the probability satisfying the water quality standard of constraints to the exceedance probability of the flow. The developed model was applied to the lower part of the Han-River. The reliability to meet the water quality standard is 70 % when 4 wastewater treatment plants of Seoul City are operated by activated sludge system at autumn of the year 2001. Treatment cost of this case is 121.288 billion won per year.
Journal of Korean Society of Industrial and Systems Engineering
/
v.40
no.4
/
pp.211-220
/
2017
The application of the theoretical model to real assembly lines has been one of the biggest challenges for researchers and industrial engineers. There should be some realistic approach to achieve the conflicting objectives on real systems. Therefore, in this paper, a model is developed to synchronize a real system (A discrete event simulation model) with a theoretical model (An optimization model). This synchronization will enable the realistic optimization of systems. A job assignment model of the assembly line is formulated for the evaluation of proposed realistic optimization to achieve multiple conflicting objectives. The objectives, fluctuation in cycle time, throughput, labor cost, energy cost, teamwork and deviation in the skill level of operators have been modeled mathematically. To solve the formulated mathematical model, a multi-objective simulation integrated hybrid genetic algorithm (MO-SHGA) is proposed. In MO-SHGA each individual in each population acts as an input scenario of simulation. Also, it is very difficult to assign weights to the objective function in the traditional multi-objective GA because of pareto fronts. Therefore, we have proposed a probabilistic based linearization and multi-objective to single objective conversion method at population evolution phase. The performance of MO-SHGA is evaluated with the standard multi-objective genetic algorithm (MO-GA) with both deterministic and stochastic data settings. A case study of the goalkeeping gloves assembly line is also presented as a numerical example which is solved using MO-SHGA and MO-GA. The proposed research is useful for the development of synchronized human based assembly lines for real time monitoring, optimization, and control.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.