• Title/Summary/Keyword: stochastic Markov process model

Search Result 67, Processing Time 0.032 seconds

Performance analysis of monitoring process using the stochastic model (추계적 모형을 이용한 모니터링 과정의 성능 분석)

  • 김제숭;홍정식;이창훈
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1990.04a
    • /
    • pp.326-334
    • /
    • 1990
  • A monitoring process of a communication network with two links is analyzed. The Markov process is introduced to compute busy and idle portions of monitoring processor and monitored rate of each link. Inter-idle times and inter-monitoring ties of monitoring processor between two links are respectively computed. A recursive formula is introduced to make the computational procedure rigorous.

  • PDF

Crack Detection of Rotating Blade using Hidden Markov Model (회전 블레이드의 크랙 발생 예측을 위한 은닉 마르코프모델을 이용한 해석)

  • Lee, Seung-Kyu;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.99-105
    • /
    • 2009
  • Crack detection method of a rotating blade was suggested in this paper. A rotating blade was modeled with a cantilever beam connected to a hub undergoing rotating motion. The existence and the location of crack were able to be recognized from the vertical response of end tip of a rotating cantilever beam by employing Discrete Hidden Markov Model (DHMM) and Empirical Mode Decomposition (EMD). DHMM is a famous stochastic method in the field of speech recognition. However, in recent researches, it has been proved that DHMM can also be used in machine health monitoring. EMD is the method suggested by Huang et al. that decompose a random signal into several mono component signals. EMD was used in this paper as the process of extraction of feature vectors which is the important process to developing DHMM. It was found that developed DHMMs for crack detection of a rotating blade have shown good crack detection ability.

  • PDF

A Study on the Performance Analysis of Process Model with Resource Constraints in Concurrent Engineering Environment (동시공학 환경에서 자원제약이 있는 프로세스 모델의 성능분석에 관한 연구)

  • 강동진;이상용;유왕진;정용식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.51
    • /
    • pp.231-240
    • /
    • 1999
  • A major concern in Concurrent Engineering is the control and management of workload in a period of process. As a general rule, leveling the peak of workload in certain period is difficult because concurrent processing is comprised of various processes, including overlapping, paralleling looping and so on. Therefore, the workload management with resource constraints is so beneficial that effective methods to analyze design process are momentous. This study presents the Timed Petri Nets approach of precedence logic networks, and provides an alternative for users to analyze constraint processes to resolve conflicts of resources. Another approach to Continuous Time Markov Chain using Stochastic Petri Nets is also proposed. These approaches are expected to facilitate resolving resource constrained scheduling problems more systematically in Concurrent Engineering environment.

  • PDF

A study on the damage process of fatigue crack growth using the stochastic model (확률적모델을 이용한 피로균열성장의 손상과정에 관한 연구)

  • Lee, Won Suk;Cho, Kyu Seoung;Lee, Hyun Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.130-138
    • /
    • 1996
  • In general, the scattler is observed in fatigue test data due to the nonhomogeneity of a material. Consequently. It is necessary to use the statistical method to describe the fatigue crack growth process precisely. Bogdanoff and Kozin suggested and developed the B-model which is the probabilistic models of cumulative damage using the Markov process in order to describe the damage process. But the B-model uses only constant probability ratior(r), so it is not consistent with the actual damage process. In this study, the r-decreasing model using a monotonic decreasing function is introduced to improve the B-model. To verify the model, thest data of fatigue crack growth of A12024-T351 and A17075-T651 are used. Compared with the empirical distribution of test data, the distribution from the r-decreasing model is satisfactory and damage process is well described from the probabilistic and physical viewpoint.

  • PDF

Development of Statistical Downscaling Model Using Nonstationary Markov Chain (비정상성 Markov Chain Model을 이용한 통계학적 Downscaling 기법 개발)

  • Kwon, Hyun-Han;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.213-225
    • /
    • 2009
  • A stationary Markov chain model is a stochastic process with the Markov property. Having the Markov property means that, given the present state, future states are independent of the past states. The Markov chain model has been widely used for water resources design as a main tool. A main assumption of the stationary Markov model is that statistical properties remain the same for all times. Hence, the stationary Markov chain model basically can not consider the changes of mean or variance. In this regard, a primary objective of this study is to develop a model which is able to make use of exogenous variables. The regression based link functions are employed to dynamically update model parameters given the exogenous variables, and the model parameters are estimated by canonical correlation analysis. The proposed model is applied to daily rainfall series at Seoul station having 46 years data from 1961 to 2006. The model shows a capability to reproduce daily and seasonal characteristics simultaneously. Therefore, the proposed model can be used as a short or mid-term prediction tool if elaborate GCM forecasts are used as a predictor. Also, the nonstationary Markov chain model can be applied to climate change studies if GCM based climate change scenarios are provided as inputs.

Evaluation of One-particle Stochastic Lagrangian Models in Horizontally - homogeneous Neutrally - stratified Atmospheric Surface Layer (이상적인 중립 대기경계층에서 라그랑지안 단일입자 모델의 평가)

  • 김석철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.397-414
    • /
    • 2003
  • The performance of one-particle stochastic Lagrangian models for passive tracer dispersion are evaluated against measurements in horizontally-homogeneous neutrally-stratified atmospheric surface layer. State-of-the-technology models as well as classical Langevin models, all in class of well mixed models are numerically implemented for inter-model comparison study. Model results (far-downstream asymptotic behavior and vertical profiles of the time averaged concentrations, concentration fluxes, and concentration fluctuations) are compared with the reported measurements. The results are: 1) the far-downstream asymptotic trends of all models except Reynolds model agree well with Garger and Zhukov's measurements. 2) profiles of the average concentrations and vertical concentration fluxes by all models except Reynolds model show good agreement with Raupach and Legg's experimental data. Reynolds model produces horizontal concentration flux profiles most close to measurements, yet all other models fail severely. 3) With temporally correlated emissions, one-particle models seems to simulate fairly the concentration fluctuations induced by plume meandering, when the statistical random noises are removed from the calculated concentration fluctuations. Analytical expression for the statistical random noise of one-particle model is presented. This study finds no indication that recent models of most delicate theoretical background are superior to the simple Langevin model in accuracy and numerical performance at well.

Performance Analysis of Monitoring Process using the Stochastic Model (추계적 모형을 이용한 모니터링 과정의 성능 분석)

  • 김제숭
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.32
    • /
    • pp.145-154
    • /
    • 1994
  • In this paper, monitoring processor in a circuit switched network is considered. Monitoring processor monitors communication links, and offers a grade of service in each link to controller. Such an information is useful for an effective maintenance of system. Two links with nonsymmetric system Parameters are considered. each link is assumed independent M/M/1/1 type. The Markov process is introduced to compute busy and idle portions of monitoring processor and monitored rate of each link. Inter-idle times and inter-monitoring times of monitoring processor between two links are respectively computed. A recursive formula is introduced to make computational procedure rigorous.

  • PDF

Joint Batch Production and Inventory Rationing Control in a Two-Station Serial Production System (두 단계 일렬 생산 시스템에서 뱃치 생산과 재고 배급 전략의 통합 구현)

  • Kim, Eun-Gab
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.2
    • /
    • pp.89-97
    • /
    • 2012
  • This paper considers a manufacturer with a two-station make-to-stock and make-to-order serial production system. The MTS facility produces a single type of component and provides components for the MTO facility that produces customized products. In addition to the internal demand from the MTO facility, the MTS facility faces demands from the spot market with the option of to accept or reject each incoming demand. This paper addresses a joint component inventory rationing and batch production control which maximizes the manufacturer's profit. Using the Markov decision process model, we investigate the structural properties of the optimal inventory rationing and batch production policy, and present two types of heuristics. We implement a numerical experiment to compare the performance of the optimal and heuristic policies and a simulation study to examine the impact of the stochastic process variability on the inventory rationing and batch production control.

Web Page Recommendation using a Stochastic Process Model (Stochastic 프로세스 모델을 이용한 웹 페이지 추천 기법)

  • Noh, Soo-Ho;Park, Byung-Joon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.6
    • /
    • pp.37-46
    • /
    • 2005
  • In the Web environment with a huge amount of information, Web page access patterns for the users visiting certain web site can be diverse and change continually in accordance with the change of its environment. Therefore it is almost impossible to develop and design web sites which fit perfectly for every web user's desire. Adaptive web site was proposed as solution to this problem. In this paper, we will present an effective method that uses a probabilistic model of DTMC(Discrete-Time Markov Chain) for learning user's access patterns and applying these patterns to construct an adaptive web site.

Off-line recognition of handwritten korean and alphanumeric characters using hidden markov models (Hidden Markov Model을 이용한 필기체 한글 및 영.숫자 오프라인 인식)

  • 김우성;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.85-100
    • /
    • 1994
  • This paper proposes a recognition system of constrained handwritten Hangul and alphanumeric characters using discrete hidden Markov models (HMM). HMM process encodes the distortion and similarity among patterns of a class through a doubly stochastic approach. Characterizing the statistical properties of characters using selected features, a recognition system can be implemented by absorbing possible variations in the form. Hangul shapes are classified into six types by fuzzy inference, and their recognition is performed based on quantized features by optimally ordering features according to their effectiveness in each class. The constrained alphanumerics recognition is also performed using the same features used in Hangul recognition. The forward-backward, Viterbi, and Baum-Welch reestimation algorithms are used for training and recognition of handwritten Hangul and alphanumeric characters. Simulation result shows that the proposed method recognizes handwritten Korean characters and alphanumerics effectively.

  • PDF