• Title/Summary/Keyword: stimuli-responsive polymers

Search Result 13, Processing Time 0.025 seconds

Synthetic bio-actuators and their applications in biomedicine

  • Neiman, Veronica J.;Varghese, Shyni
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.185-198
    • /
    • 2011
  • The promise of biomimetic smart structures that can function as sensors and actuators in biomedicine is enormous. Technological development in the field of stimuli-responsive shape memory polymers have opened up a new avenue of applications for polymer-based synthetic actuators. Such synthetic actuators mimic various attributes of living organisms including responsiveness to stimuli, shape memory, selectivity, motility, and organization. This article briefly reviews various stimuli-responsive shape memory polymers and their application as bioactuators. Although the technological advancements have prototyped the potential applications of these smart materials, their widespread commercialization depends on many factors such as sensitivity, versatility, moldability, robustness, and cost.

Application of Stimuli-responsive Chitosan Micelles for Improved Therapeutic Efficiency of Anticancer Agents (항암제의 치료 효율성을 높이기 위한 다양한 자극 응답성 물질이 개질된 키토산 마이셀의 응용성 고찰)

  • Jeong, Gyeong-Won;Park, Jun-Kyu;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.147-154
    • /
    • 2018
  • Currently, to overcome low therapeutic efficiencies and side effects of anticancer agents, the study of drug carrier based on polymers have been consistently investigated. Although the traditional drug carrier based on polymers displayed an excellent result and significant progress, there has been a problem with the side effect and low therapeutic efficiency because of the premature drug release before reached to the targeted region by the low stability in blood stream and sustained drug release. In this review article, to improve the problem of inefficient drug release, methods were suggested, which can maximize the therapeutic efficiency by increasing the stability in the blood stream and triggering drug release at the target site by introducing a stimuli-responsive substance to the non-toxic and biocompatible natural polymer chitosan.

Application of Polymers in Cosmetics (고분자 물질의 화장품 응용)

  • Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.411-422
    • /
    • 2013
  • Polymers in cosmetics are used to deliver desired attributes to skin and hair. Precisely constructed block and graft copolymers widen the range of available mechanical properties and compatibilities. Stimuli responsive hydrophobic polymers can be triggered to become hydrophilic by changes in their environment and this can confer waterproof properties at low temperature and easy water removal at higher temperatures. Transfer-resistant cosmetics can be possible due to silicone resins. The control of rheology properties in cosmetics gradually continue to be easy with copolymers. Durability of colors and fragrances for rinse-off products can be enhanced by delivery systems from complex coacervates. Polymeric anti-microbials promise product preservation while minimizing the concern of skin permeation. This article reviews recent trends in the use of polymers in cosmetics.

General picture of co-nonsolvency for linear and ring polymers

  • Park, Gyehyun;Lee, Eunsang;Jung, YounJoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.147-154
    • /
    • 2016
  • Co-nonsolvency is a puzzling phenomenon that a polymer swells in a good solvent individually, but it collapses in a mixture of good solvents. This structural transition with changing solvent environment has been drawing attention due to practical application for stimuli-responsive polymer. The aim of this work is to describe the physical origin of the co-nonsolvency. In this work, we present Monte Carlo simulations for polymer solutions by using simple and general model. We simulate linear and ring polymers to compare their co-nonsolvency behaviors. Calculating Flory exponents and bridging fractions gives a good description for polymer structures. While the polymer structure shows non-monotonous behavior with increasing the cosolvent fraction, the chemical potential decreases monotonously. This indicates that coil-to-globule transition of polymers is purely controlled by free energy and can be regarded as a thermodynamics transition. We also present that ring polymers have higher looping probability than linear polymers, thus the bridging fraction remains higher at high cosolvent fraction. Our study provides a new perspective to understand polymer structure when the polymer "dissolves well" in any solvent.

  • PDF

Thermoresponsive Graft Copolymers of Hyaluronic Acid (히알루론산의 온도감응성 그래프트 공중합체)

  • Choi, So-Young;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.223-227
    • /
    • 2011
  • Stimuli-responsive polymers have been investigated as the materials playing the critical roles in various applications. Thermoresponsive graft copolymers, poly (N-isopropylacrylamide)-g-hyaluronic acid (PNIPAAm-g-HA) and elastin-like peptide-g-hyaluronic acid (ELP-g-HA), were synthesized by coupling carboxylic polymers (PNIPAAm-COOH or ELP) to biocompatible HA through amide linkages. Thermoresponsive behavior was observed in both the copolymers, and the results of turbidity measurement were consistent with the results of rheological examination. Among the two copolymers, the ELP graft copolymer shows less cooperative LCST transition than the PNIPAAm case. As the content of graft chains of PNIPAAm and ELP increases, viscosity increases, and the increase was larger in PNIPAAm case at a graft content. These results shows us that the introduction of grafts provides thermosensitivity to biocompatible HA, whose characteristics can be engineered.

Controlled synthesis of reactive polymeric architectures for stimuli-responsive materials

  • Theato, Patrick;Nilles, Katja;Metz, Nadine
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.329-329
    • /
    • 2006
  • Various new active ester monomers based on (meth)acrylates and 4-vinylbenzoic acid have been prepared. Investigation of the controlled radical polymerization behavior of the respective monomers resulted in excellent polymerization control, thus, opening synthetic routes to reactive block copolymers. Polymer analogous reactions with amines yielded functional polymers. In the case of the copolymer poly(N-isopropylacrylamide-co-acetone oxime acrylate) a lower critical solution temperature could be measured at $52^{\circ}C$. Thus, the reactive copolymer features two characters: reactive AND stimuliresponsive behavior.

  • PDF

Stimuli-Responsive Micelles of Amphiphilic and Bis-hydrophilic Block and Graft Copolymers

  • Muller Axel H. E.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.101-101
    • /
    • 2006
  • We have studied the micellisation of poly(n-butyl acrylate)-block-poly(acrylic acid) and poly(n-butyl acrylate)-graft-poly(acrylic acid) in aqueous solution. The size and structure of the formed micelles was elucidated by scattering and imaging techniques. The micelle structure depends on pH, composition, and topology: graft copolymers form much smaller micelles that block copolymers of similar composition. We have also synthesized block copolymers of acrylic acid and N-isopropylacrylamide (NIPAAm) or N,N-diethylacrylamide (DEAAm). Due to the LCST of polyNIPAAm and polyDEAAm, these block copolymers spontaneously form micelles upon heating and they form inverse micelles upon decreasing pH below 4. If the LCST block is much longer than the PAA one, this presents a very convenient way to prepare crew-cut micelles. The polymers have been successfully used as stabilizers in emulsion polymerization. They also have been conjugated to streptavidin. The conjugates reversibly form mesoscopic particles on heating.

  • PDF

Self-healing Elastomers As Dream Smart Materials (꿈의 스마트 재료로서 자기치유 탄성체)

  • Kim, Il;Shin, Nam-Ho;Jo, Jung-Kyu;Hur, A-Young;Li, Haiqing;Ha, Chang-Sik
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.196-208
    • /
    • 2009
  • Sophisticated polymeric materials with 'responsive' properties are beginning to reach the market. The use of reversible, noncovalent interactions is a recurring design principle for responsive materials. Recently developed hydrogen-bonding units allow this design principle to be taken to its extreme. Supramolecular polymers, where hydrogen bonds are the only force keeping the monomers together, form materials whose (mechanical) properties respond strongly to a change in temperature or solvent. In this review, we describe some examples of hydrogen-bonded supramolecular polymers that can be utilized for self-healing materials. Synthesis of a rubber-like material that can be recycled might not seem exciting. But one that can also repeatedly repair itself at room temperature, without adhesives, really stretches the imagination. Autonomic healing materials respond without external intervention to environmental stimuli in a nonlinear and productive fashion, and have great potential for advanced engineering systems.