• Title/Summary/Keyword: stiffnesses

Search Result 230, Processing Time 0.024 seconds

On the Relationship between Material Removal and Interfacial Properties at Particulate Abrasive Machining Process (연마가공에서의 접촉계면 특성과 재료제거율간의 관계에 대한 연구)

  • Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.404-408
    • /
    • 2009
  • In this paper, the relationship between the material removal rate and the interfacial mechanical properties at particle-surface contact situation, which can be seen in an abrasive machining process using micro/nano-sized particles, was discussed. Friction and stiffnesses were measured experimentally on an atomic force microscope (AFM) by using colloidal probes which have a silica colloid particle in place of tip to simulate a particle-flat surface contact in an abrasive machining process. From the experimental investigation and theoretical contact analysis, the interfacial contact properties such as lateral stiffness of contact, friction, the material removal rate were presented with respect to some of material surfaces and the relationship between the properties as well.

Studies on post-tensioned and shaped space-truss domes

  • Schmidt, Lewis C.;Li, Hewen
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.693-710
    • /
    • 1998
  • This paper concerns studies on the shape formation of post-tensioned and shaped steel domes. The post-tensioned and shaped steel domes, assembled initially at ground level in an essentially flat condition, are shaped to a curved space form and erected into the final position by means of a post-tensioning technique. Based on previous studies on this shape formation principle, three post-tensioned and shaped steel domes have been constructed. The results of the shape formation tests and finite element analyses are reported in this paper. It is found that the first two test domes did not furnish a part-spherical shape as predicted by finite element analyses, because the movements of some mechanisms were not controlled sufficiently. With a revised post-tensioning method, the third dome obtained the theoretical prediction. The test results of the three post-tensioned and shaped domes have shown that a necessary condition to form a desired space shape from a planar layout with low joint stiffnesses is that the movements of all the existing mechanisms must be effectively controlled as indicated by the finite element analysis. The extent of the maximum elastic deformation of a post-tensioned and shaped steel structure is determined by the strength of the top chords and their joints. However, due to the semi-rigid characteristic of the top chord joints, the finite element analyses cannot give a close prediction for the maximum elastic deformations of the post-tensioned and shaped steel domes. The results of the current studies can be helpful for the design and construction of this type of structure.

Structural Parameters and Modeling Technique for Prediction of Dynamic Response of a One-story Building with a Flexible Diaphragm (유연한 지붕을 갖는 단층 건물의 동적응답 예측을 위한 해석모델링 방법과 구조변수의 설정)

  • ;Donald W. White
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.271-280
    • /
    • 2003
  • The purpose of the study presented in this paper is to develope the general model for capture of the linear and nonlinear response of a flexible diaphragm building in which there are significant contributions from the out-of-plane walls. Two single-story single-diaphragm half scale reinforced masonry buildings were tested by researchers at the United States Army Construction Engineering Research Laboratory (CERL). The first had a metal deck diaphragm. The second specimen had a diaphragm with a single layer of diagonal lumber sheathing, A multiple degree of freedom (MDOF) approach is adopted in this paper. The required stiffnesses and strengths of the components within this model are determined.

Multi-Modal Vibration Control of Laminated Composite Plates Using Piezoceramic Sensors/Actuators (압전감지기/작동기를 이용한 복합적층판의 다중모드 진동제어)

  • Kim, Mun-Hyeon;Gang, Yeong-Gyu;Park, Hyeon-Cheol;Hwang, Un-Bong;Han, Gyeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3173-3185
    • /
    • 1996
  • Multi-model vibration control of laminated composites plates for various fiver orientations has been carried out by making use of piezolectric materials(PZT) as sensors and actuators. Cantilever plate is used as a specimen to test multi-modal vibration supression under random exitation. Impulse technique is applied to determine the natural frequency, the damping ratio(.zeta.) and the modal damping(2.zeta..omega.) of the first bending and the trosion modes. Two independent controllers are implemented to control the two modes simultaneously and established digitally on the basis of the direct negative velocity feedback control with collocated sensor/actuator. Experimental results for various fiber orientations and feedback gains are compared with finite element analysis considering stiffnesses and dampings of piezoeletiric sensors, actuators and bonding layer.

Structural Layout Optimization Strategy Considering Assemblage (조립성을 고려한 위상 최적설계법 개발)

  • Choi Guk-Jin;Kim Myung-Jin;Kim Yoon-Young;Jang Gang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.512-519
    • /
    • 2006
  • In the ground-structure-based topology optimization, beam elements are regarded to be rigidly connected to each other, and joints are assumed to have infinite stiffness. Thus the optimized topology of a structure is obtained according to the assumption of no joint effect, and the resulting structure should be manufactured in one piece if the joint effect is to be excluded as much as possible. The underlying problems are that 1) the performance of the structure might be seriously decreased if the members of the structure are connected through welding or bolting, not manufactured in one piece, and 2) the topology of the structure will be changed if the joint effect is taken into account. In the paper, the assemblage issue is considered on topology optimization, and a new formulation based on the joint stiffness-varied ground beam structure is developed. Joints of a beam structure are modeled by elastic spring elements whose stiffnesses are controlled by design variables during the optimization.

Structural Characteristic Analysis on the Hydrostatic Guide Way and Feeding System of a High-Precision Centerless Grinder for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 유정압 안내면 및 이송계에 대한 구조 특성 해석)

  • Kim, Seok-Il;Lee, Won-Jae;Cho, Sun-Joo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1008-1013
    • /
    • 2003
  • This paper concerns the structural characteristic analysis and evaluation on the hydrostatic guide way and feeding system of a high precision centerless grinder for machining ferrules. In order to realize the required accuracy of ferrules with sub-micron order, the axial stiffness and motion accuracy of feeding system have to become higher level than those of existing centerless grinders. Under these points of view, the physical prototype of feeding system consisted of steel bed, hydrostatic guide way and ballscrew feeding mechanism is designed and manufactured for trial. Experimental results show that the axial and vertical stiffnesses of the physical prototype are very low as compared with those design values. In this paper, to reveal the cause of these stiffness difference, the structural deformations on the virtual prototype of feeding system are analyzed based on the finite element method under experimental conditions. The simulated results illustrate that the deformation of front ballscrew support-bearing bracket is the main cause of reduction in the axial stiffness of feeding system, and the deflection of bed structure and the bending deformation of hydrostatic guide rails are the main causes of reduction in the vertical stiffness of feeding system.

  • PDF

Structural Characteristic Analysis on the Hydrostatic Guide Way and Feeding System of a High-Precision Centerless Grinder for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 유정압 안내면 및 이송계에 대한 구조 특성 해석)

  • Kim, Seok-Il;Park, Chun-Hong;Cho, Soon-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.896-903
    • /
    • 2004
  • This paper proposes the structural characteristic analysis and evaluation on the hydrostatic guide way and feeding system of a high-precision centerless grinder for machining ferrules. In order to realize the required accuracy of ferrules with sub-micron order, the axial stiffness and motion accuracy of feeding system have to become higher level than those of existing centerless grinders. Under these points of view, the physical prototype of feeding system composed of steel bed, hydrostatic guide way and ballscrew feeding mechanism is designed and manufactured for trial. Experimental results show that the axial and vertical stiffnesses of the physical prototype are very low as compared with those design values. In this paper, to reveal the cause of these stiffness difference, the structural deformations on the virtual prototype of feeding system are analyzed based on the finite element method under experimental conditions. The simulated results illustrate that the deformation of front ballscrew support-bearing bracket is the main cause of reduction in the axial stiffness of feeding system, and the deflection of bed structure and the bending deformation of hydrostatic guide rails are the main causes of reduction in the vertical stiffness of feeding system.

Buckling of restrained steel columns due to fire conditions

  • Hozjan, Tomaz;Planinc, Igor;Saje, Miran;Srpcic, Stanislav
    • Steel and Composite Structures
    • /
    • v.8 no.2
    • /
    • pp.159-178
    • /
    • 2008
  • An analytical procedure is presented for the determination of the buckling load and the buckling temperature of a straight, slender, geometrically perfect, axially loaded, translationally and rotationally restrained steel column exposed to fire. The exact kinematical equations of the column are considered, but the shear strain is neglected. The linearized stability theory is employed in the buckling analysis. Behaviour of steel at the elevated temperature is assumed in accordance with the European standard EC 3. Theoretical findings are applied in the parametric analysis of restrained columns. It is found that the buckling length factor decreases with temperature and depends both on the material model and stiffnesses of rotational and translational restraints. This is in disagreement with the buckling length for intermediate storeys of braced frames proposed by EC 3, where it is assumed to be temperature independent. The present analysis indicates that this is a reasonable approximation only for rather stiff rotational springs.

Nonlinear Subgrade Model-Based Comparison Study between the Static and Dynamic Analyses of FWD Nondestructive Tests (노상의 비선형 모델에 근거한 비파괴 FWD 시험에 있어 정적과 동적 거동의 비교연구)

  • Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.73-80
    • /
    • 2017
  • PURPOSES : This paper presents a comparison study between dynamic and static analyses of falling weight deflectometer (FWD) testing, which is a test used for evaluating layered material stiffness. METHODS: In this study, a forward model, based on nonlinear subgrade models, was developed via finite element analysis using ABAQUS. The subgrade material coefficients from granular and fine-grained soils were used to represent strong and weak subgrade stiffnesses, respectively. Furthermore, the nonlinearity in the analysis of multi-load FWD deflection measured from intact PCC slab was investigated using the deflection data obtained in this study. This pavement has a 14-inch-thick PCC slab over fine-grained soil. RESULTS: From case studies related to the nonlinearity of FWD analysis measured from intact PCC slab, a nonlinear subgrade model-based comparison study between the static and dynamic analyses of nondestructive FWD tests was shown to be effectively performed; this was achieved by investigating the primary difference in pavement responses between the static and dynamic analyses as based on the nonlinearity of soil model as well as the multi-load FWD deflection. CONCLUSIONS : In conclusion, a comparison between dynamic and static FEM analyses was conducted, as based on the FEM analysis performed on various pavement structures, in order to investigate the significance of the differences in pavement responses between the static and dynamic analyses.

Identification of Dynamic Joint Characteristics Using a Multi-domain FRF- based Substructuring Method (전달함수 다중합성법을 이용한 진동시스템의 결합부 특성값 동정)

  • 이두호;황우석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.635-644
    • /
    • 2004
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared f3r the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate far realistic problems.

  • PDF