• Title/Summary/Keyword: stiffnesses

Search Result 231, Processing Time 0.018 seconds

The Effect of Neglecting the Longitudinal Moment Terms on the Moment of Laminated Plates with Increasing Aspect Ratio (경계조건에 따른 적층복합판의 모멘트에 대한 종방향 모멘트 무시효과)

  • 김덕현;박제선;한봉구;이정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.223-230
    • /
    • 1998
  • The most of the design engineers for construction has academic background of bachelors degree. Theories for advanced composite structures are too difficult for such engineers and some simple but accurate enough methods are necessary. The senior author has reported that some laminate orientations have decreasing values of D$_{16}$, B$_{16}$, D$_{26}$ and B$_{26}$ stiffnesses as the ply number increases. Such plates behave as special orthotropic plates and simple formulas developed by the author can be used. Most of the bridge and building slabs on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms(M$_{x}$) on the relevant partial differential equations of equilibrium. In this paper, the result of the study on the subject problem is presented.ented.d.

  • PDF

Simple Method of Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Supports (탄성지지된 3경간 연속 철근 콘크리트교의 간편한 진동해석)

  • 김덕현;박제선;김성환;이정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.349-356
    • /
    • 1998
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span continuous reinforced concrete bridge with elastic intermediate supports in presented. Such bridge represents either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators for active control. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, In this paper. The influence of the modulus of the foundation and $D_{22}$, $D_{l2}$, $D_{66}$ stiffnesses on the natural frequency is thoroughly studied.d.

  • PDF

Structural Parameter Estimation of Bridges Using Neural Networks (신경망을 사용한 교량구조의 미지계수 추정)

  • 방은영;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.95-102
    • /
    • 1995
  • Procedures for estimation of axial or flexural rigidities of bridge members by neural networks are shown. To treat large scale structures containing many unkwon parameters, substructuring concept is introduced. The measurement points are selected considering the sensitivity of the element stiffnesses of interest. Utilization of relative mode vectors is found to be very effective for the local parameter estimation. Then, the study focuses on the method to obtain the training set enough to represent structures. It is shown that noise injection is effective to reduce the estimation errors caused by measurement noise. Verification of the present method is carried out using a cable-stayed bridge model.

  • PDF

Vibration analysis of two span continuous special orthotropic plates with elastic intermediate support (탄성지지된 2경간 연속 철근콘크리트 슬래브교와 샌드위치 패널슬래브의 진동해석)

  • 김덕현;김경진;이세진;이원석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.341-348
    • /
    • 1998
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the subject problem is presented. The structure considered for this report is two span continuous special orthotropic plates with elastic intermediate support. The use of elastic support as one of the passive control means is common. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purposa in this paper. The influence of the modulus of the foundation, and $D_{ij}$ stiffnesses on the natural frequency is thoroughly studied.

  • PDF

Drift Control for Multistory Moment Frames under Lateral Loading

  • Grigorian, Carl E.;Grigorian, Mark
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.4
    • /
    • pp.355-365
    • /
    • 2013
  • The paper reports results of recent studies on the effects of column support conditions on the lateral displacements of moment frames at incipient collapse. The article presents a number of exercises in the plastic theory of structures that lead to useful design formulae. It has been shown that Drift Shifting (DS) is caused due to differences in the stiffnesses of adjoining columns, and that changes in drift ratios are more pronounced at first level column joints in both fixed as well as pinned base frames. In well proportioned moment frames, DS in the upper levels could be minimized, even reduced to zero. It has been demonstrated that DS can be eliminated in properly designed fixed and grade beam supported (GBS) moment frames. Several examples, including symbolic P-delta effects, have been provided to demonstrate the validity and the applications of the proposed ideas to the design and drift control of moment frames. The proposed methodology is exact within the bounds of the theoretical assumptions and is well suited for preliminary design and teaching purposes.

Structural Test and Safety Evaluation for Fin Assembly of Scientific Sound Rocket (과학로케트 날개조립체의 구조강도시험 및 안전성 평가)

  • 허용학;김갑순;주진원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3395-3403
    • /
    • 1994
  • The structural test technique and equipment for strength test of astronautical structures, such as rocket, were presented in this paper. Structural strength tests of the fin assembly with fin and fin frame in the scientific sound rocket were performed with load levels of 100% limit load and 150% ultimate load of design lift force. Safety factors in each part of the fin assembly were calculated at these two load levels and the stiffnesses based on the measured deflection of fin assembly and strains on fin and fin frame were evaluated at these two load level. As the result of structural test, the fin assembly was estimated to be safe.

A Design Guide for Composite Laminates by the Compressive after Impact Tests (충격후 잔류압축강도시험에 의한 복합재료 적층판의 설계)

  • 정태은;박경하;류정주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2105-2113
    • /
    • 1995
  • The compressive tests under impact conditions were performed to establish a design guide for impact damage tolerance. The composition of layup was selected for the real cases of composite aircraft structure. The energy level of visible of visible damage threshold was determined as 7 Joules. It was found that the normalized bending stiffnesses in the direction of closely fixed boundary affected the area of damage. Graphite/epoxy used in the tests exhibited 60% reduction in compression strength at the energy level of visible damage threshold. Wet-conditioned specimens represented 9% reduction in residual compressive strength in comparison with room temperature ambient specimens. In this study, a design factor of 2.1 was proposed for the low velocity impact damage.

Dynamic Analysis and Optimization of 1ton Commercial Truck Using ADAMS/Insight (ADAMS/Insight를 이용한 1톤 상용트럭의 동역학 해석 및 최적화)

  • Chun, Hung-Ho;Tak, Tae-Oh
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.15-20
    • /
    • 2003
  • Stochastic simulation technique has advantages over deterministic simulation in various engineering analysis, since stochastic simulation can take into consideration of scattering of various design variables, which is inherent characteristics of physical world. In this work, Monte-Carlo simulation mothod in ADAMS/Insight for steady-state cornering and J-turn behavior of a truck with design variables like hard points and busing stiffnesses have performed to achieve better dynamic performance. The main purpose is to improve understeer gradient at steady-state cornering and minimize peak lateral acceleration and peak yaw rate at J-turn. Through correlation analysis, design variables that have high impacts on the cornering behavior were selected, and significant performance improvement has been achieved by appropriately changing the high impact design variables.

  • PDF

Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Supports II

  • Kim, Duk-hyun;Han, Bong-Koo;Lee, Jung-Ho;Park, Ji-Hyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.220-223
    • /
    • 2000
  • A method of calculating the natural frequency corresponding to the modes of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span continuous reinforced concrete bridge with elastic intermediate supports is presented. Such bridge represents either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators for active control The concrete slab is considered as a special orthotropic plate. The influence of the modulus of the foundation and $D_{22}$, $D_{12}$, $D_{66}$ stiffnesses on the natural frequency is thoroughly studied.

  • PDF

Analysis of Anisotropic Structures under Multiphysics Environment (멀티피직스 환경하의 이방성 구조물 해석)

  • Kim, Jun-Sik;Lee, Jae-Hun;Park, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.140-145
    • /
    • 2011
  • An anisotropic beam model is proposed by employing an asymptotic expansion method for thermo-mechanical multiphysics environment. An asymptotic method based on virtual work is introduced first, and then the variables of mechanical displacement and temperature rise are asymptotically expanded by taking advantage of geometrical slenderness of elastic bodies. Subsequently substituting these expansions into the virtual work principle allows us to asymptotically expand the virtual work. This will yield a set of recursive virtual works from which two-dimensional microscopic and one-dimensional macroscopic equations are systematically derived at each order. In this way, homogenized stiffnesses and thermomechanical coupling coefficients are derived. To demonstrate the validity and efficiency of the proposed approach, composite beams are taken as a test-bed example. The results obtained herein are compared to those of three-dimensional finite element analysis.