• Title/Summary/Keyword: stiffness reinforcement

Search Result 574, Processing Time 0.027 seconds

Earthquake effect on the concrete walls with shape memory alloy reinforcement

  • Beiraghi, Hamid
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.491-506
    • /
    • 2019
  • Literature regarding concrete walls reinforced by super elastic shape memory alloy (SMA) bars is rather limited. The seismic behavior of a system concurrently including a distinct steel reinforced concrete (RC) wall, as well as another wall reinforced by super elastic SMA at the first story, and steel rebar at upper stories, would be an interesting matter. In this paper, the seismic response of such a COMBINED system is compared to a conventional system with steel RC concrete walls (STEEL-Rein.) and also to a wall system with SMA rebar at the first story and steel rebar at other stories ( SMA-Rein.). Nonlinear time history analysis at maximum considered earthquake (MCE) and design bases earthquake (DBE) levels is conducted and the main responses like maximum inter-story drift ratio and residual inter-story drift ratio are investigated. Furthermore, incremental dynamic analysis is used to accomplish probabilistic seismic studies by creating fragility curves. Results demonstrated that the SMA-Rein. system, subjected to DBE and MCE ground motions, has almost zero and 0.27% residual maximum inter-story drifts, while the values for the COMBINED system are 0.25% and 0.51%. Furthermore, fragility curves show that using SMA rebar at the base of all walls causes a larger probability of exceedance 3% inter-story drift limit state compared to the COMBINED system. Static push over analysis demonstrated that the strength of the COMBINED model is almost 0.35% larger than that of the two other models, and its general post-yielding stiffness is also approximately twice the corresponding stiffness of the two other models.

Study on Safety Evaluation of the Half-Depth Precast Deck with RC Rib Pannel for the Flexural Behavior (리브 형상을 갖는 반단면 프리캐스트 판넬의 휨 안전성 평가 연구)

  • Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.76-84
    • /
    • 2019
  • The precast pannels are used as formwork in Half-depth precast deck systems. Therefore, it has many advantages, including safe and convenient construction and reduced construction period compared to cast-in-place construction method. In half-depth precast deck systems, the bonding of precast pannels to cast-in place concrete is very important. To enhance the performance of half-depth precast deck system, it is necessary to improve the composite efficiency of the interface or increase the stiffness of the precast pannel to reduce deformation or stress on the interface. In this study, a flexural test of half-depth precast deck system was performed, in which the shear connecting reinforcement was applied to increase the bonding performance at the interface, and the rib shape precast panels were applied to improve stiffness. In addition, the safety and serviceability of these systems were evaluated. Test results show that all of specimens have the required flexural strength under the ultimate strength limit design. It was also evaluated to have sufficient safety for the serviceability of deflection and crack under the serviceability limit design.

Development of Aluminum Matrix Composites Containing Nano-carbon Materials (나노탄소물질을 함유하는 알루미늄기지 복합소재 개발)

  • Kim, Jungjoon;Kim, Daeyoung;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.253-258
    • /
    • 2021
  • There is increasing demand for the development of a new material with high strength, high stiffness, and good electrical conductivity that can be used for high-voltage direct current cables. In this study, we develop aluminum-based composites containing C60 fullerenes, carbon nanotubes, or graphene using a powder metallurgical route and evaluate their strength, stiffness, coefficient of thermal expansion, and electrical conductivity. By optimizing the process conditions, a material with a tensile strength of 800 MPa, an elastic modulus of 90 GPa, and an electrical conductivity of 40% IACS is obtained, which may replace iron-core cables. Furthermore, by designing the type and volume fraction of the reinforcement, a material with a tensile strength of 380 MPa, elastic modulus of 80 GPa, and electrical conductivity of 54% IACS is obtained, which may compete with AA 6201 aluminum alloys for use in all-aluminum conductor cables.

Push-out tests on stud shear connectors with constrained structure of steel-concrete composite beams

  • Qi, Jingjing;Xie, Zuwei;Cao, Hua;Huang, Zhi;Lv, Weirong;Shi, Weihua
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.789-798
    • /
    • 2022
  • The stud shear connector is the main force transfer member in the steel-concrete composite member, and the mechanical behavior is very complicated in the concrete. The concrete around the stud is subjected to the pry-out local pressure concentration of the stud, which can easily produce splitting mirco-cracks. In order to solve the problem of pry-out local splitting of stud shear connector, a kind of stud shear connector with constraint measure is proposed in this paper. Through the push-out test, the interface shear behavior of the new stud shear connector between steel and concrete flange plate was studied, and the difference between the new stud shear connector and the traditional stud connector was compared. The results show that the stud shear connector with constraint measure can effectively avoid the adverse effect of local pressure splitting by relying on its own constraint measure. The shear stiffness of the interface between steel and concrete flange plates is greatly improved, which provides a theoretical basis for the design of strong connection coefficient of steel-concrete composite structures.

Compressive and tensile strength behaviors of sand reinforced with fibers and natural Para rubber

  • Sommart Swasdi;Arsit Iyaruk;Panu Promputtangkoon;Arun, Lukjan
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.361-373
    • /
    • 2023
  • This study aimed to investigate the engineering properties and mechanical behaviors of polymer-fibers treated sand. Para rubber (PR), natural fiber (NF), and geosynthetic fiber (GF) were used to reinforce poorly graded sand. A series of unconfined compressive and splitting tensile strength tests were performed to analyze the engineering behaviors and strength enhancement mechanism. The experiment results indicated that the PR-fibers mixture could firmly enhance the strength properties of sand. The stress-strain characteristics and failure patterns have been changed due to the increase of PR and fibers content. The presence of PR and fibers strengthened the sand and enhanced the stiffness and ductility behavior of the mixture. The stiffness of reinforced sand reaches an optimum state when both NF and GF are 0.5%, while the optimum PR contents are 20% and 22.5% for the mixture with NF and GF, respectively. An addition of PR and fiber into sand contributed to increasing interlocking zone and bonding of PR-sand interfacial.

Flexural behavior and flexural capacity prediction of precast prestressed composite beams

  • Hu, Manxin;Yang, Yong;Yu, Yunlong;Xue, Yicong
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.225-238
    • /
    • 2022
  • In order to improve the cracking resistance of reinforced concrete and give full play to the advantages of prefabricated assembly structure in construction, prestressed reinforced concrete composite beam (PRCC) is proposed. Through the bending static test of seven I-shaped beam specimens, the bending failure modes and bearing capacity of PRCC and reinforced concrete composite beam are compared and analyzed, and the effects of prestress size, prestressed reinforcement layout and prestress application sequence on the flexural behavior of PRCC beams are studied. The results show that the cracking load and ultimate load of PRCC beams significantly increased after prestressing, and prestressed tendons can effectively control the crack development. With the increase of prestressing degree, the deformation resistance and bending stiffness of PRCC beams are increased. The application sequence of prestress has little influence on the mechanical properties of PRCC beams. The crack width, stiffness and normal section bearing capacity of PRCC beam are analyzed, and the calculated results are in good agreement with the experimental results.

Buckling behavior of nonlinear FG-CNT reinforced nanocomposite beam reposed on Winkler/Pasternak foundation

  • Rachid Zerrouki;Mohamed Zidour;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Zakaria Belabed;Abdelmoumen Anis Bousahla;Mohamed Abdelaziz Salem;Khaled Mohamed Khedher
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.297-305
    • /
    • 2024
  • This study investigates the buckling behavior of CNTRC beams on a Winkler-Pasternak elastic foundation, considering their stiffness. To achieve the highest accuracy, the shear stiffness is taken into account based on the Higher-order Shear Deformation Theory (HSDT). A novel exponential power-law distribution of the CNT volume fraction across the beam thickness is employed to model CNTRC beams. Various reinforcement patterns are incorporated into the polymer matrix, featuring single-walled carbon nanotubes (SWCNT) that are both aligned and distributed. The effective mechanical properties of the CNTRC beam are predicted using the rule of mixtures. Hamilton's principle is applied to derive the differential equations of motion. This theoretical framework enables the validation of the approach by comparing numerical simulation results with previous studies. The impact of the exponent order (n), CNT volume fraction, geometrical ratio, and Winkler-Pasternak parameters on buckling analysis is thoroughly presented and discussed. The results indicate that, among the different types of analyzed CNTRC beams, the X-Beam pattern demonstrates the highest buckling load capacity.

On the thermo-mechanical vibration of an embedded short-fiber-reinforced nanobeam

  • Murat Akpinar;Busra Uzun;Mustafa Ozgur Yayli
    • Advances in nano research
    • /
    • v.17 no.3
    • /
    • pp.197-211
    • /
    • 2024
  • This work investigates the thermo-mechanical vibration frequencies of an embedded composite nano-beam restrained with elastic springs at both ends. Composite nanobeam consists of a matrix and short fibers as reinforcement elements placed inside the matrix. An approach based on Fourier sine series and Stokes' transform is adopted to present a general solution that can examine the elastic boundary conditions of the short-fiber-reinforced nanobeam considered with the Halpin-Tsai model. In addition to the elastic medium effect considered by the Winkler model, the size effect is also considered on the basis of nonlocal strain gradient theory. After creating an eigenvalue problem that includes all the mentioned parameters, this problem is solved to examine the effects of fiber and matrix properties, size parameters, Winkler stiffness and temperature change. The numerical results obtained at the end of the study show that increasing the rigidity of the Winkler foundation, the ratio of fiber length to diameter and the ratio of fiber Young's modulus to matrix Young's modulus increase the frequencies. However, thermal loads acting in the positive direction and an increase in the ratio of fiber mass density to matrix mass density lead to a decrease in frequencies. In this study, it is clear from the eigenvalue solution calculating the frequencies of thermally loaded embbeded short-fiber-reinforced nanobeams that changing the stiffness of the deformable springs provides frequency control while keeping the other properties of the nanobeam constant.

Evaluation of Reliability of Strain Gauge Measurements for Geosynthetics (토목섬유 보강재에 적용한 스트레인게이지 실측값의 신뢰성 평가)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Li, Zhuang;Kim, Uk-Gie
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.87-96
    • /
    • 2015
  • Geosynthetics are widely used in different ways such as reinforcement of structures in road, railway, harbor and dam engineering, drainage, separation and erosion prevention. They are especially applied to reinforced retaining wall and slope or ground reinforcement. Recently, geosynthetics reinforced pile supported (GRPS) embankment was developed to improve stability and construability of embankments in railway engineering. Extension strains are usually measured by strain gauges adhered to geosynthetics to evaluate the stability of geosynthetics. However, the measurements are influenced by manufacturing method and stiffness of geosynthetics and also adherence of strain gauge. In this study, wide-width tensile strength tests were performed on three types of geosynthetics including geogrid, woven geotextile and non-woven geotextile. During the test, strains of geosynthetics were measured by both video extensometer and strain gauges adhered to the geosynthetics and the measured results were compared. Results show that the measured results by strain gauges have high reliability in case of large stiffness geosythetics like geogrid and woven geotextile, whereas they have very low reliability for small stiffness geosythetics like non-woven geotextile.

Effect of Freeze-Thaw Cycles after Cracking Damage on the Flexural Behavior of Reinforced Concrete Beams (균열손상 후 동결융해를 경험한 철근콘크리트 보의 휨거동)

  • Kim, Sun-Woo;Choi, Ki-Bong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.399-407
    • /
    • 2010
  • The flexural behaviors of two types of beam members exposed to freeze-thaw cycles were evaluated. This study aims to examine the effect of freeze-thaw cycles on the behavior characteristics of reinforced concrete (RC) beams. For the purpose, a part of the beam specimens were damaged until yielding of tension reinforcement was reached, before they were exposed to 150 and 300 cycles of freeze-thaw. Cyclic tests, as well as monotonic tests, were conducted to evaluate the stiffness degradation characteristics when same cycle is repeated. The material tests showed that relative dynamic modulus of concrete exposed to 300 cycles of freeze-thaw moderately decreased to 86.8% of normal concrete, indicating that concrete used in this study has good durability against freeze and thaw damage. The results of monotonic tests showed reduction of flexural strength, ductility and stiffness of the beam specimens exposed to freeze-thaw cycles compared with those of the control speciments. In particular, BDF13 specimens, which had been subjected to artificial cracking damage, did not showed enough flexural strength to satisfy nominal moment required by current concrete structure design code. In the monotonic tests results, BF75 specimens exposed to freeze-thaw cycles showed 10% or more cyclic stiffness degradation. Therefore, it was thought that deformation of concrete in compression have to be considered in design process of members under cyclic load, such as seismic device.