• Title/Summary/Keyword: stiffness problem

Search Result 666, Processing Time 0.026 seconds

Structural identification of a steel frame from dynamic test-data

  • Morassi, A.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.237-258
    • /
    • 2001
  • Structural identification via modal analysis in structural mechanics is gaining popularity in recent years, despite conceptual difficulties connected with its use. This paper is devoted to illustrate both the capabilities and the indeterminacy characterizing structural identification problems even in quite simple instances, as well as the cautions that should be accordingly adopted. In particular, we discuss an application of an identification technique of variational type, based on the measurement of eigenfrequencies and mode shapes, to a steel frame with friction joints under various assembling conditions. Experience has suggested, so as to restrict the indeterminacy frequently affecting identification issues, having resort to all the a priori acknowledged information on the system, to the symmetry and presence of structural elements with equal stiffness, to mention one example, and mindfully selecting the parameters to be identified. In addition, considering that the identification techniques have a local character and correspond to the updating of a preliminary model of the structure, it is important that the analytical model on the first attempt should be adequately accurate. Secondly, it has proved determinant to cross the results of the dynamic identification with tests of other typology, for instance, static tests, so as to fully understand the structural behavior and avoid the indeterminacy due to the nonuniqueness of the inverse problem.

Analysis of Welding Distortion of Large Steel Plate by Using Analytical Solution of Temperature Distribution and Finite Element Method (온도분포 해석 해와 유한요소법을 이용한 대형 강판의 용접변형 해석)

  • Hong, Sung-Bin;Bae, Kang-Yul;Yang, Young-Soo
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.69-74
    • /
    • 2014
  • Welding distortions of large steel structures had mainly been estimated with some simplified formula obtained by lots of experience and numerical analyses for small steel structures. However, the large structures would have different characteristics of distortion with welding because of their own stiffness coming from the size itself. Therefore, in order to find some measures for preventing welding distortion of large structure, it is requite in advance to precisely analysis thermal stress and distortion during welding of the structure. Numerical analysis for larger structure has been known to take large amount of calculation time and have a poor convergency problem during the thermo-elasto-plastic calculation. In this study, a hybrid method is proposed to analysis the thermal stress and distortion of a large steel plate with the finite element analysis by incorporating with temperature distribution of the plate calculated by an analytical solution. The proposed method revealed that the thermo-mechanical analysis for welding of the large structure could be performed with a good convergence and produced precise results with much reduced time consumption.

Vibration behavior of large span composite steel bar truss-reinforced concrete floor due to human activity

  • Cao, Liang;Li, Jiang;Zheng, Xing;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.391-404
    • /
    • 2020
  • Human-induced vibration could present a serious serviceability problem for large-span and/or lightweight floors using the high-strength material. This paper presents the results of heel-drop, jumping, and walking tests on a large-span composite steel rebar truss-reinforced concrete (CSBTRC) floor. The effects of human activities on the floor vibration behavior were investigated considering the parameters of peak acceleration, root-mean-square acceleration, maximum transient vibration value (MTVV), fundamental frequency, and damping ratio. The measured field test data were validated with the finite element and theoretical analysis results. A comprehensive comparison between the test results and current design codes was carried out. Based on the classical plate theory, a rational and simplified formula for determining the fundamental frequency for the CSBTRC floor is derived. Secondly, appropriate coefficients (βrp) correlating the MTVV with peak acceleration are suggested for heel-drop, jumping, and walking excitations. Lastly, the linear oscillator model (LOM) is adopted to establish the governing equations for the human-structure interaction (HSI). The dynamic characteristics of the LOM (sprung mass, equivalent stiffness, and equivalent damping ratio) are determined by comparing the theoretical and experimental acceleration responses. The HSI effect will increase the acceleration response.

FLUID-STRUCTURE INTERACTION ANALYSIS OF LIQUID STORAGE STRUCTURES (액체 저장구조물의 유체-구조물 상호작용 해석)

  • 윤정방;김진웅;서정문;전영선
    • Computational Structural Engineering
    • /
    • v.5 no.4
    • /
    • pp.103-111
    • /
    • 1992
  • In this paper, liquid sloshing effects in rectangular storage structures for spent fuel under earthquake loadings are investigated. Eulerian and Lagrangian approaches are presented. The Eulerian approach is carried out by solving the boundary value problem for the fluid motion. In the Lagrangian approach, the fluid as well as the storage structure is modelled by the finite element method. The fluid region is discretized by using fluid elements. The (1*1)-reduced integration is carried out for constructing the stiffness matrices of the fluid elements. Seismic analysis of the coupled system is carried out by the response spectra method. The numerical results show that the fluid forces on the wall obtained by two approaches are in good agreements. By including the effect of the wall flexibility, the hydrodynamic forces due to fluid motion can be increased very significantly.

  • PDF

Seismic Behavior of Reinforced Concrete Moment Frames Retrofitted by Toggle Bracing System with High Density Friction Damper (토글 가새-고집적 마찰댐퍼를 설치한 철근콘크리트 모멘트 골조의 성능 평가)

  • Han, Sang Whan;Kim, Ji Yeong;Moon, Ki Hoon;Lee, Chang Seok;Kim, Hyung Joon;Lee, Kang Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.133-140
    • /
    • 2014
  • The friction damper can be used for improving the seismic resistance of existing buildings. The damper is often installed in bracing members. The energy dissipation capacity of the damping systems depends on the type of the structure, the configuration of the bracing members, and the property of dampers. In Korea, there are numerous low- to mid-rise reinforced concrete moment frames that were constructed considering only gravity loads. Those frames may be vulnerable for future earthquakes. To resolve the problem, this study developed a toggle bracing system with a high density friction damper. To investigate the improvement of reinforced concrete frames after retrofit using the developed damped system, experimental tests were conducted on frame specimens with and without the damped system. The results showed that the maximum strength, initial stiffness and energy dissipation capacity of the framed with the damped system were much larger than those of the frame without the damped system.

Retrofitting of RC girders using pre-stressed CFRP sheets

  • Bansal, Prem Pal;Sharma, Raju;Mehta, Ankur
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.833-849
    • /
    • 2016
  • Pre-stressing of existing structures using steel cables, FRP cables or FRP laminates has been successfully tried in the past. Retrofitting of beams using pre-stressed laminates does not utilize the full strength of the FRP due to de-bonding of the laminates before the fibre fracture. In the present study attempt has been made to overcome this problem by replacing the FRP laminates by the FRP sheets. In the present paper the effect of initial damage level and pre-stress level on strength, stiffness, cracking behaviour and failure mode of girders retrofitted using pre-stressed CFRP sheets has been studied. The results indicate that rehabilitation of initially damaged girders by bonding pre-stressed CFRP sheets improves the flexural behaviour of beams appreciably. However, it has been observed that with increase in pre-stressing force the load carrying capacity of the girders increases up to a particular level up to which the mode of failure is fibre fracture. Thereafter, the mode of failure shifts from fibre fracture to de-bonding and there is no appreciable increase in load carrying capacity with further increase in pre-stressing force.

Analysis of Inclined Crack Extension in Orthotropic Solids Under Biaxial Loading (2축하중을 받는 직교이방성체내 경사균열진전의 해석)

  • Lim, Won-Kyun;Choi, Seung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.993-1000
    • /
    • 2002
  • The objective of this work is to develop the capability to analyze accurately the mixed-mode propagation of a crack in composite structures with elastic orthotropic material stiffness properties and anisotropic material strength characteristics. In order to develop the capability to fully analyze fracture growth and failure in anisotropic structures, we examined the fundamental problem of mixed mode fracture by carrying out the analysis on orthotropic materials with an inclined crack subject to biaxial loading. Our goal here is to include an additional term in the asymptotic expansion of the crack tip stress field and to show that the direction of crack initiation can be significantly affected by that term. We employ the normal stress ratio theory to predict the direction of crack extension. It is shown that the angle of crack extension can be altered by horizontal loads and the use of second order term in the series expansion is important f3r the accurate determination of crack growth direction.

Study on the Tool Holding System for High Speed Machining of the Deep Pocket (깊은홈의 고속가공을 위한 툴링시스템의 연구)

  • Kang, M.C.;Kim, J.S.;Lee, D.W.;Kang, H.S.;Kim, K.H.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.38-47
    • /
    • 2002
  • Machining quality has been improved with the development of cutting tools. However, it is difficult to obtain a high degree of quality in machining a deep pocket with a long end mill, since machining accuracy is mainly dependent on the stiffness of the cutting tool and tool holder. To improve machining quality in machining a deep pocket using an end mill, the performance by cutting condition compare with others. Owing to this problem, it is necessary to select suitable tool and holder in the deep pocket machining. In this study, the hydraulic holder for the high speed machining is introduced and the performance of that is compared with others according to cutting conditions. The cutting parameters involved were; slenderness ratio in the range of 3 to 6 (L/D), radial depth of cut from 0.01 to 0.05 mm. Cutting force and surface roughness, precision of form were observed during the experiment to investigate cutting state.

  • PDF

Mechanical Design of Ring Laser Gyroscope Using Finite Element Method (링 레이저 자이로스콥을 위한 유한요소법 기계 설계)

  • Lee, Jeong Ick
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.107-111
    • /
    • 2013
  • The gyroscopes have been used as a suitable inertial instrument for the navigation guidance and attitude controls. The accuracy as very sensitive sensor is limited by the lock-in region (dead band) due to the frequency coupling between two counter-propagating waves at low rotation rates. This frequency coupling gives no phase difference, and an angular increment is not detected. This problem can be overcome by mechanically dithering the gyroscope. This paper presents the design method of mechanical dither by the theoretical considerations and the verification of the theoretical equations through FEM applications. As a result, comparing to the past result, the maximum prediction error of resonant frequency was within 3 percent and peak dither rate was within 5 percent. It was found that the theoretical equations can be feasible for the mechanical performance of dither.

Design Sensitivity Analysis of an Engine Mount System using the Multi-Domain FRF-based Substructuring Method (다중 전달함수합성 법을 이용한 엔진마운트 시스템의 설계민감도 해석)

  • 이두호;황우석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.237-244
    • /
    • 2002
  • Analyzing acoustic-structural systems such as automobiles and aircraft, the FRF-based substructuring (FBS) method is one of the most powerful tools. In this paper, a general procedure for the parametric sensitivity analysis of vibro-acoustic problems has been presented using the multi-domain FRF-based substructuring formulation. For an acoustic-structural system sub-structured by multiple domains, the substructuring formulation gives the reaction farces on the interface boundaries. The design sensitivity formula is obtained from the direct differentiation of the reaction force expression with respect to the design vector. As a practical application, the proposed design sensitivity formula is applied to an engine mount system of passenger car. An objective of the problem is to identify the most effective engine mounts and bushes in minimizing the interior noise over the concerned rpm range. The comparison of the sensitivity results with those of the finite difference method shows excellent agreement. In addition, stiffness modifications of the mounts and bushes identified through the design sensitivity analysis lead to a successful decrease of the interior noise. This results show usefulness of the present method very well.