• Title/Summary/Keyword: stiffness modeling

Search Result 699, Processing Time 0.026 seconds

Reduced Degree of Freedom Modeling for Progressive Collapse Analysis of Tall Buildings using Applied Element Method (응용 요소법을 이용한 초고층 건물의 축소 모델링 연쇄붕괴 해석)

  • Kim, Han-Soo;Wee, Hae-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.599-606
    • /
    • 2014
  • Since progressive collapse of tall buildings can cause enormous damage, it should be considered during the design phase of tall buildings. The progressive collapse analysis of tall buildings using finite element methods is almost impossible due to the vast amount of computing time. In this paper, applied element method was evaluated as an alternative to the finite element method. Reduced DOFs modeling technique was proposed to enable the progressive collapse analysis of tall buildings. The reduced DOFs model include only the part which is subjected to direct damage from blast load and the structural properties such as mass, transferred load and stiffness of excluded parts are accumulated into the top story of the reduced DOFs model. The proposed modeling technique was applied to the progressive collapse analysis of 20-story RC building using three collapse scenarios. The reduced DOFs model showed similar collapse behavior to the whole model while the computing time was reduced by 30%. The proposed modeling technique can be utilized in the progressive collapse analysis of tall buildings due to abnormal loads.

Intrinsically Extended Moving Least Squares Finite Difference Method for Potential Problems with Interfacial Boundary (계면경계를 갖는 포텐셜 문제 해석을 위한 내적확장된 이동최소제곱 유한차분법)

  • Yoon, Young-Cheol;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.411-420
    • /
    • 2009
  • This study presents an extended finite difference method based on moving least squares(MLS) method for solving potential problems with interfacial boundary. The approximation constructed from the MLS Taylor polynomial is modified by inserting of wedge functions for the interface modeling. Governing equations are node-wisely discretized without involving element or grid; immersion of interfacial condition into the approximation circumvents numerical difficulties owing to geometrical modeling of interface. Interface modeling introduces no additional unknowns in the system of equations but makes the system overdetermined. So, the numbers of unknowns and equations are equalized by the symmetrization of the stiffness matrix. Increase in computational effort is the trade-off for ease of interface modeling. Numerical results clearly show that the developed numerical scheme sharply describes the wedge behavior as well as jumps and efficiently and accurately solves potential problems with interface.

Structural Analysis Modeling of Disaster Resilient Greenhouse Structures (내재해형 온실구조의 해석을 위한 구조모델)

  • Jung, Ji-Eun;Kim, Dae-Jin;Kim, Hong-Jin;Shin, Seung-Hoon;Kim, Jin-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.7-15
    • /
    • 2017
  • This paper presents the results of the parametric study to investigate the effects of several analysis modeling parameters such as support conditions, member connectivities and cable member stiffness on the main mode shapes and natural frequencies of a representative disaster resilient greenhouse structure. In addition, an ambient vibration test was performed on the representative greenhouse structure and its main mode shapes and natural frequencies were obtained. By comparing the experimental and analysis results, a proper analysis modeling method of the representative greenhouse structure was proposed.

Parametric modeling and shape optimization of four typical Schwedler spherical reticulated shells

  • Wu, J.;Lu, X.Y.;Li, S.C.;Xu, Z.H.;Li, L.P.;Zhang, D.L.;Xue, Y.G.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.813-833
    • /
    • 2015
  • Spherical reticulated shells are widely applied in structural engineering due to their good bearing capability and attractive appearance. Parametric modeling of spherical reticulated shells is the basis of internal analysis and optimization design. In the present study, generation methods of nodes and the corresponding connection methods of rod elements are proposed. Modeling programs are compiled by adopting the ANSYS Parametric Design Language (APDL). A shape optimization method based on the two-stage algorithm is presented, and the corresponding optimization program is compiled in FORTRAN environment. Shape optimization is carried out based on the objective function of the minimum total steel consumption and the restriction condition of strength, stiffness, slenderness ratio, stability. The shape optimization of four typical Schwedler spherical reticulated shells is calculated with the span of 30 m~80 m and rise to span ratio of 1/7~1/2. Compared with the shape optimization results, the variation rules of total steel consumption along with the span and rise to span ratio are discussed. The results show that: (1) The left and right rod-Schwedler spherical reticulated shell is the most optimized and should be preferentially adopted in structural engineering. (2) The left diagonal rod-Schwedler spherical reticulated shell is second only to left and right rod regarding the mechanical behavior and optimized results. It can be applied to medium and small-span structures. (3) Double slash rod-Schwedler spherical reticulated shell is advantageous in mechanical behavior but with the largest total weight. Thus, this type can be used in large-span structures as far as possible. (4) The mechanical performance of no latitudinal rod-Schwedler spherical reticulated shell is the worst and with the second largest weight. Thus, this spherical reticulated shell should not be adopted generally in engineering.

The study of a practical modeling method for the analysis of dynamic behavior by the mockup test of prestressed concrete girder (PSC I형 거더 실물 모형체 실험을 통한 동적거동특성 분석의 실용적 모델링 기법 연구)

  • Kim, Hyung-Kyu;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.148-156
    • /
    • 2018
  • The integrity assessment of the bridge behavior is generalized by field data of a static load-deformation curve and dynamic properties such as impact factors and natural frequencies. Evaluating it with numerical analysis is a reasonable method. The results of the mockup test and the numerical analysis are corresponded with each other since the behavior of service load proceeds in elastic region. In case of the dynamic behavior of structure, especially for the analysis of vibration, the result of the mockup test differs from the result of numerical analysis a little due to the geometric shape and non-homogeneous materials. In order to converge on these tolerances, this study suggested several numerical models, analyzed the sensitivity and finally offered a practical modeling method for the estimation of bridge on the basis of the result of mockup test. Based on the model substituted concrete section for strands section, the natural frequency of the model composed with axial stiffness of strands or the model applied the modified modulus of elasticity was closest with the result of the mockup test.

Nonlinear finite element analysis of top- and seat-angle with double web-angle connections

  • Kishi, N.;Ahmed, A.;Yabuki, N.;Chen, W.F.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.201-214
    • /
    • 2001
  • Four finite element (FE) models are examined to find the one that best estimates moment-rotation characteristics of top- and seat-angle with double web-angle connections. To efficiently simulate the real behavior of connections, finite element analyses are performed with following considerations: 1) all components of connection (beam, column, angles and bolts) are discretized by eight-node solid elements; 2) shapes of bolt shank, head, and nut are precisely taken into account in modeling; and 3) contact surface algorithm is applied as boundary condition. To improve accuracy in predicting moment-rotation behavior of a connection, bolt pretension is introduced before the corresponding connection moment being surcharged. The experimental results are used to investigate the applicability of FE method and to check the performance of three-parameter power model by making comparison among their moment-rotation behaviors and by assessment of deformation and stress distribution patterns at the final stage of loading. This research exposes two important features: (1) the FE method has tremendous potential for connection modeling for both monotonic and cyclic loading; and (2) the power model is able to predict moment-rotation characteristics of semi-rigid connections with acceptable accuracy.

Measuring elastic modulus of bacterial biofilms in a liquid phase using atomic force microscopy

  • Kim, Yong-Min;Kwon, Tae-Hyuk;Kim, Seungchul
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.863-870
    • /
    • 2017
  • With the increasing interest in using bacterial biofilms in geo-engineering practices, such as soil improvement, sealing leakage in earth structures, and hydraulic barrier installation, understanding of the contribution of bacterial biofilm formation to mechanical and hydraulic behavior of soils is important. While mechanical properties of soft gel-like biofilms need to be identified for appropriate modeling and prediction of behaviors of biofilm-associated soils, elastic properties of biofilms remain poorly understood. Therefore, this study investigated the microscale Young's modulus of biofilms produced by Shewanella oneidensis MR-1 in a liquid phase. The indentation test was performed on a biofilm sample using the atomic force microscopy (AFM) with a spherical indentor, and the force-indentation responses were obtained during approach and retraction traces. Young's modulus of biofilms was estimated to be ~33-38 kPa from these force-indentation curves and Hertzian contact theory. It appears that the AFM indentation result captures the microscale local characteristics of biofilms and its stiffness is relatively large compared to the other methods, including rheometer and hydrodynamic shear tests, which reflect the average macro-scale behaviors. While modeling of mechanical behaviors of biofilm-associated soils requires the properties of each component, the obtained results provide information on the mechanical properties of biofilms that can be considered as cementing, gluing, or filling materials in soils.

Stress Analysis Using Finite Element Modeling of a Novel RF Microelectromechanical System Shunt Switch Designed on Quartz Substrate for Low-voltage Applications

  • Singh, Tejinder;Khaira, Navjot K.;Sengar, Jitendra S.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.225-230
    • /
    • 2013
  • This paper presents a novel shunt radio frequency microelectromechanical system switch on a quartz substrate with stiff ribs around the membrane. The buckling effects in the switch membrane and stiction problem are the primary concerns with RF MEMS switches. These effects can be reduced by the proposed design approach due to the stiffness of the ribs around the membrane. A lower mass of the beam and a reduction in the squeeze film damping is achieved due to the slots and holes in the membrane, which further aid in attaining high switching speeds. The proposed switch is optimized to operate in the k-band, which results in a high isolation of -40 dB and low insertion loss of -0.047 dB at 21 GHz, with a low actuation voltage of only 14.6 V needed for the operation the switch. The membrane does not bend with this membrane design approach. Finite element modeling is used to analyze the stress and pull-in voltage.

Continuum Modeling and dynamic Analysis of Platelike Truss Structures (평판형 트러스구조물의 연속체 모델링 및 동적해석)

  • 이우식;김종윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1021-1029
    • /
    • 1992
  • A rational and straightforward method is introduced for developing continuum models of large platelike periodic lattice structures based on energy equivalence. The procedure for developing continuum plate models involves the use of existing well-defined finite element matrices for the easy calculation of strain and kinetic energies of a repeating cell, from which the reduced stiffness and mass matrices are obtained in terms of continuum degrees- of-freedom defined in this paper. The equivalent continuum plate properties are obtained from the direct comparison of the reduced matrices for continuum plate with those for lattice plate. The advantages of the present continuum method are that it may be applied to arbitrary lattice configurations and may give most diverse equivalent continuum plate properties including all kinds of coupling, while other methods may give only limited structural properties. To evaluate the continuum method developed in this paper, free vibration analyses for both of continuum and lattice plates are conducted. Numerical results show that the present continuum method gives very reliable structural and dynamic properties compared to other well-recognized methods.

Mechanical Behavior and Numerical Estimation of Fracture Resistance of a SCS6 Fiber Reinforced Reaction Bonded Si$_3$N$_4$ Continuous Fiber Ceramic Composite

  • Kwon, Oh-Heon;Michael G. Jenkins
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1093-1101
    • /
    • 2002
  • Continuous fiber ceramic composites (CFCCs) have advantages over monolithic ceramics : Silicon Nitride composites are not well used for application because of their low fracture toughness and fracture strength, but CFCCs exhibit increased toughness for damage tolerance, and relatively high stiffness in spite of low specific weight. Thus it is important to characterize the fracture resistance and properties of new CFCCs materials. Tensile and flexural tests were carried out for mechanical properties and the fracture resistance behavior of a SCS6 fiber reinforced Si$_3$N$_4$ matrix CFCC was evaluated. The results indicated that CFCC composite exhibit a rising R curve behavior in flexural test. The fracture toughness was about 4.8 MPa$.$m$\^$1/2 , which resulted in a higher value of the fracture toughness because of fiber bridging. Mechanical properties as like the elastic modulus, proportional limit and the ultimate strength in a flexural test are greater than those in a tensile test. Also a numerical modeling of failure process was accomplished for a flexural test. This numerical results provided a good simulation of the cumulative fracture process of the fiber and matrix in CFCCs.