• Title/Summary/Keyword: stiffness modeling

Search Result 699, Processing Time 0.023 seconds

Use of UHPC slab for continuous composite steel-concrete girders

  • Sharif, Alfarabi M.;Assi, Nizar A.;Al-Osta, Mohammed A.
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.321-332
    • /
    • 2020
  • The loss of composite action at the hogging moment zone for a continuous composite girder reduces the girder stiffness and strength. This paper presents an experimental investigation of the use of an ultra-high performance concrete (UHPC) slab at the hogging moment zone and a normal concrete (NC) slab at the sagging moment zone. The testing was conducted to verify the level of loading at which composite action is maintained at the hogging moment zone. Four two-span continuous composite girders were tested. The thickness of the UHPC varied between a half and a full depth of slab. The degree of shear connection at the hogging moment zone varied between full and partial. The experimental results confirmed the effectiveness of the UHPC slab to enhance the girder stiffness and maintain the composite action at the hogging moment zone at a load level much higher than the upper service load limit. To a lesser degree enhanced performance was also noted for the smaller thickness of the UHPC slab and partial shear connection at the hogging moment zone. Plastic analysis was conducted to evaluate the ultimate capacity of the girder which yielded a conservative estimation. Finite element (FE) modeling evaluated the girder performance numerically and yielded satisfactory results. The results indicated that composite action at the hogging moment zone is maintained for the degree of shear connection taken as 50% of the full composite action and use of UHPC as half depth of slab thickness.

Establishment of an Occupant Analysis modeling for Automobile Side Impact Using ATB Software (ATB 소프트웨어를 이용한 측면충돌시 승랙거동해석 모델링의 확립 및 분석)

  • 임재문;최중원;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.85-96
    • /
    • 1996
  • Most protection systems such as seat belts and airbags are not effective means for side structure. There has been significant effort in the automobile industries in seeking other protective methods, such as stiffer structure and padding on the door inner panel. Therefore, a car-to-car side impact model has been developed using ATB occupant simulation program and validated for test data of the vehicle. Compared to the existing side impact models, the developed model has a more detailed vehicle side structure representation for the more realistic impact response of the door. This model include impact bar which effectively increases the side structure stiffness without reduction of space between the occupant and the door and padding for absorbing impact energy. The established model is applied to a 4-door vehicle. The parameter study indicated that a stiffer impact bar would reduce both the acceleration-based criteria, such as thoracic trauma index: TTI(d), and deformation-based criteria, such as viscous criterion(VC). Padding on the door inner panel would reduce TTI(d) while VC gives the opposite indication in a specified thickness range. For a 4-door vehicle, the stiffness enhancement of B-pillar is more beneficial than that of A-pillar for occupant injury severity indices.

  • PDF

Vibration from a Shaft-Bearing-Plate System Due to an Axial Excitation of Helical Gears

  • Park, Chan-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2105-2114
    • /
    • 2006
  • In this paper, a simplified model is studied to predict analytically the vibration from the helical gear system due to an axial excitation of helical gears. The simplified model describes gear, shaft, bearing, and housing. In order to obtain the axial force of helical gears, the mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer matrices for the rod and bearing are used, using a spectral method with four pole parameters. The model is validated by finite element analysis. Using the model, parameter studies are carried out. As a result, the linearized dynamic shaft force due to the gear excitation in the frequency domain was proposed. Out-of-plan displacement from the forced vibrating circular plate and the renewed mode normalization constant of the circular plate were also proposed. In order to control the axial vibration of the helical gear system, the plate was more important than the shaft and the bearing. Finally, the effect of the dominant design parameters for the gear system can be investigated by this model.

Modeling and Experimental Response Characterization of the Chevron-type Bi-stable Micromachined Actuator (Chevron형 bi-stable MEMS 구동기의 모델링 및 실험적 응답특성 분석)

  • 황일한;심유석;이종현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.203-209
    • /
    • 2004
  • Compliant bi-stable mechanism allows two stable states within its operation range staying at one of the local minimum states of the potential energy. Energy storage characteristics of the bi-stable mechanism offer two distinct and repeatable stable states, which require no power input to maintain it at each stable state. This paper suggests an equivalent model of the chevron-type bi-stable microactuator using the equivalent spring stiffness in the rectilinear and the rotational directions. From this model the range of spring stiffness where the bi-stable mechanism can be operated is analyzed and compared with the results of the FEA (Finite Element Analysis) using ANSYS for the buckling analysis, both of which show a good agreement. Based on the analysis, a newly designed chevron-type bi-stable MEMS actuator using hinges is suggested for the latch-up operation. It is found that the experimental response characteristics of around 36V for the bi-stable actuation for the 60$mu extrm{m}$ stroke correspond very well to the results of the equivalent model analysis after the change in cross-sectional area by the fabrication process is taken into account. Together with the resonance frequency experiment where 1760Hz is measured, it is shown that the chevron-type bi-stable MEMS actuator using hinges is applicable to the optical switch as an actuator.

A Parametrical Study on the flexural strength of Concrete-Filled SHS Columns to Composite H-Beam Connections (충전각형강관 기둥-합성 H형강보 접합부 휨성능 결정요인에 관한 연구)

  • Lee, Jong Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.385-395
    • /
    • 1999
  • Square hollow section columns and H-section beams have recently been increasing1y used. Rigid column-beam connections cannot be made for the structural system and thus some measures to improve the rotational stiffness of connections should be developed. For this purpose, several types of connections. such as H-section beams connected to concrete-filled square hollow section columns, have been contrived and put to experiment. Since the experimental works are usually difficult and expensive. Particularly test of all the types of connections with similar behavior may not be feasible. Instead, the numerical analysis will be adopted predict the flexural stiffness of connections. In this work, FEM modeling techniques are examined and parametric analysis study has been carried out. The major parameters considered are concrete strength, thickness of steel column, magnitude and eccentricity of axial forces.

  • PDF

Analysis of Stiffness for Frustum-shaped Coil Spring (원추형 코일스프링의 강성해석)

  • Kim, Jin-Hun;Lee, Soo-Jong;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.250-255
    • /
    • 2008
  • Springs are widely utilized in machine element. To find out stiffness of frustum-shaped coil spring, the space beam theory using the finite element method is adopted in this paper. In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. To find out load vector of coil spring subjected to distributed compression. principle of virtual work is adapted. And this theory was programming using MATLAB software. To compare FEM using MATLAB software was applied MSC. Nastran software. The geometry model for MSC. Patran was produced by 3-D design modeling software. Finite element model was produced by MSC. Patran. Finite element was applied tetra (CTETRA) having 10 node. The analysis results of the MATLAB and MSC. Nastran are fairly well agreed with those of various experiments. Using MATLAB program proposed in this paper and MSC. Nastran, spring constants and stresses can be predicted by input of few factors.

System Identification for Analysis Model Upgrading of FRP Decks (FRP 바닥판의 해석모델개선을 위한 System Identification 기법)

  • Seo, Hyeong-Yeol;Kim, Doo-Kie;Kim, Dong-Hyawn;Cui, Jintao;Lee, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.588-593
    • /
    • 2007
  • Fiber reinforced polymer(FRP) composite decks are new to bridge applications and hence not much literature exists on their structural mechanical behavior. As there are many differences between numerical displacements through static analysis of the primary model and experimental displacements through static load tests, system identification (SI)techniques such as Neural Networks (NN) and support vector machines (SVM) utilized in the optimization of the FE model. During the process of identification, displacements were used as input while stiffness as outputs. Through the comparison of numerical displacements after SI and experimental displacements, it can note that NN and SVM would be effective SI methods in modeling an FRP deck. Moreover, two methods such as response surface method and iteration were proposed to optimize the estimated stiffness. Finally, the results were compared through the mean square error (MSE) of the differences between numerical displacements and experimental displacements at 6 points.

  • PDF

DDM Rotordynamic Design Sensitivity Analysis of an APU Turbogenerator Having a Spline Shaft Connection

  • Lee, An-Sung;Ha, Jin-Woong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.57-63
    • /
    • 2003
  • An eigenvalue design sensitivity formulation of a general nonsymmetric-matrix rotor-bearing system is devised. using the DDM (direct differential method). Then, investigations on the design sensitivities of critical speeds are carried out for an APU turbogenerator with a spline shaft connection. Results show that the dependence of the rate of change of the critical speed on the stiffness changes of bearing models of spline shaft connection points is negligible, and thereby their modeling uncertainty does not present any problem. And the passing critical speeds up to the 4th critical speed are not sensitive to the design stiffness coefficients of four main bearings. Further, the dependence of the rate of change of the critical speed on the shaft-element length changes shows quantitatively that the spline shaft has some limited influence on the 4th critical speed but no influence on the 1st to 3rd critical speeds. With no adverse effect from the spline shaft, the APU system achieves a critical speed separation margin of more than 40% at a rated speed of 60,000 rpm.

Modal Analysis of a Rotating Packet Blade System having a crack (한 개의 크랙을 가진 회전하는 패킷 블레이드 시스템의 진동해석)

  • Kwon, Seung-Min;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.266-271
    • /
    • 2009
  • A modeling method for the modal analysis of a multi-packet blade system having a crack undergoing rotational motion is presented in this paper. Each blade is assumed as a slender cantilever beam. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. Hybrid deformation variables are employed to derive the equations of motion. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters related to the angular speed, the depth and location of a crack on the modal characteristics of the system are investigated with some numerical examples.

  • PDF

A Study of Vibration Analysis Due to Structual Changes of Dynamic Structure (동적 구조물의 구조변화에 의한 진동해석 연구)

  • 현천성;이기형;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2033-2048
    • /
    • 1992
  • This paper presents the theoretical development and qualitative evaluation of a new concept in the mathematical modeling of dynamic structures. We use both test data and analytical approximations to identify the parameters of an incomplete model. The model has the capability of predicting the response of the points of interest on the structure over the frequency range of interest and can be used to predict the changes in natural frequencies and normal modes due to structural changes. The theory was tested by running simulated tests on a relatively simple structure, identifying the parameters of the incomplete model, and using this model to predict the effects on frequency and mode shapes of several mass and stiffness changes. The conditions of the tests were varied by selecting different numbers of points of measurement, varying the frequency range, and by including assumed measurement error. It is recommended that the theoretical development be continued and that applications to more complex structures be carried out in order to develop a better understanding of the limitations and capabilities of the method. A successful, more definitive sevaluation could lead to immediate practical applications.