• 제목/요약/키워드: stiffness increase

검색결과 1,178건 처리시간 0.025초

경계요소법에 의한 유한폭 판재내의 대칭 원형함유물과 균열의 상호간섭에 대한 연구 (A Study for Mutual Interference between Symmetric Circular Inclusion and Crack in Finite Width Plate by Boundary Element Method)

  • Park, S.O.
    • 한국정밀공학회지
    • /
    • 제14권8호
    • /
    • pp.137-145
    • /
    • 1997
  • A two-dimensional program for the analysis of bimaterial inclusion has been developed using the bound- ary element method. In order to study the effects of circular inclusion on the stress field of the crack tip, numerical analysis was performed for the straight crack of finite length around the symmetric circular inclusion whose modulus of elasticity was different from that of the matrix material. In the case of inclusion whose stiffness was smaller than that of the matrix material, the stress intensity factor was found to increase as the crack enamated. The stress intensity factor was uninfluenced from the radial change in inclusion and remained constant for the stiffness equivalent to the matrix materials, where as it decreased for the inclusion with larger stiffness. For the vareation in the distance of the inclusion, a small increase in the stress intensity factor was observed for the case with small or equal stiffness compared with the matrix materials. The inclusion with larger stiffness showed a gradual decrease in the strss intensity factor as the crack emanated.

  • PDF

ANALYSIS PROCESS APPLIED TO A HIGH STIFFNESS BODY FOR IMPROVED VEHICLE HANDLING PROPERTIES

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.629-636
    • /
    • 2007
  • This paper describes the process of analyzing vehicle stiffness in terms of frequency band in order to improve vehicle handling. Vehicle handling and ride comfort are highly related to the systems such as suspension, seat, steering, and the car body design. In existing analytical processes, the resonance frequency of a car body is designed to be greater than 25 Hz in order to increase the stiffness of the body against idle vibration. This paper introduces a method for using a band with a frequency lower than 20 Hz to analyze how stiffness affects vehicle handling. Accordingly, static stiffness analysis of a 1g cornering force was conducted to minimize the deformation of vehicle components derived from a load on parts attached to the suspension. In addition, this technology is capable of achieving better performance than older technology. Analysis of how body attachment stiffness affects the dynamic stiffness of a bushing in the attachment parts of the suspension is expected to lead to improvements with respect to vehicle handling and road noise. The process of developing a car body with a high degree of stiffness, which was accomplished in the preliminary stage of this study, confirms the possibility of improving the stability performance and of designing a lightweight prototype car. These improvements can reduce the time needed to develop better vehicles.

The stiffness-degradation law of base metal after fatigue cracking in steel bridge deck

  • Liang Fang;Zhongqiu Fu;Bohai Ji;Xincheng Li
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.239-251
    • /
    • 2023
  • The stiffness evaluation of cracked base metal is of great guidance to fatigue crack reinforcement. By carrying out fatigue tests and numerical simulation of typical cracking details in steel box girder, the strain-degradation law of cracked base metal was analyzed and the relationship between base metal stress and its displacement (stiffness) was explored. The feasibility of evaluating the stress of cracked base metal based on the stress field at the crack tip was verified. The results demonstrate that the stiffness of cracked base metal shows the fast-to-slow degradation trend with fatigue cracking and the base metal at 50mm or more behind the crack tip basically lose its bearing capacity. Drilling will further accelerate stiffness degradation with the increase of hole diameters. The base metal stress has a negative linear relation with its displacement (stiffness), The stress of cracked base metal is also related to stress intensity factor and its relative position (distance, included angle) to the crack tip, through which the local stiffness can be effectively evaluated. Since the stiffness is not uniformly distributed along the cracked base metal, the reinforcement patch is suggested to be designed according to the stiffness to avoid excessive reinforcement for the areas incompletely unloaded.

Response modification factor and seismic fragility assessment of skewed multi-span continuous concrete girder bridges

  • Khorraminejad, Amir;Sedaghati, Parshan;Foliente, Greg
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.389-403
    • /
    • 2021
  • Skewed bridges, being irregular structures with complicated dynamic behavior, are more susceptible to earthquake damage. Reliable seismic-resistant design of skewed bridges can be achieved by accurate determination of nonlinear seismic demands. However, the effect of geometric characteristics on the response modification factor (R-factor) is not accounted for in bridge design practices. This study attempts to investigate the effects of changes in the number of spans, skew angle and bearing stiffness on R-factor values and to assess the seismic fragility of skewed bridges. Results indicated that changes in the skew angle had no significant effect on R-factor values which were in consonance with code-prescribed R values. Also, unlike the increase in the number of spans that resulted in a decrease in the R-factor, the increase in bearing stiffness led to higher R-factor values. Findings of the fragility analysis implied that although the increase in the number of spans, as well as the increase in the skew angle, led to a higher failure probability, greater values of bearing stiffness reduced the collapse probability. For practicing design engineers, it is recommended that maximum demands on substructure elements to be calculated when the excitation angle is applied along the principal axes of skewed bridges.

노인군 보행 속도 증가에 따른 하지 강성 증가 (Vertical Limb Stiffness Increased with Gait Speed in the Elderly)

  • 홍현화;박수경
    • 한국정밀공학회지
    • /
    • 제28권6호
    • /
    • pp.687-693
    • /
    • 2011
  • Spring-mass models have been widely accepted to explain the basic dynamics of human gait. Researchers found that the leg stiffness increased with gait speed to increase energy efficiency. However, the difference of leg stiffness change with gait speed between the young and the elderly has not been verified yet. In this study, we calculated the lower limb stiffness of the elderly using walking model with an axial spring. Vertical stiffness was defined as the ratio of the vertical force change to the vertical displacement change. Seven young and eight elderly subjects participated to the test. The subjects walked on a 12 meter long, 1 meter wide walkway at four different gait speeds, ranging from their self-selected speed to maximum speed randomly. Kinetic and kinematic data were collected using three force plates and motion capture cameras, respectively. The vertical stiffness of the two groups increased as a function of walking speed. Maximum walking speed of the elderly was slower than that of the young, yet the walking speed correlated well with the optimal stiffness that maximizes propulsion energy in both groups. The results may imply that human may use apparent limb stiffness to optimize energy based on spring-like leg mechanics.

CMP 패드 강성에 따른 산화막 불균일성(WIWNU)에 관한 연구 (A Study on the Within Wafer Non-uniformity of Oxide Film in CMP)

  • 박기현;정재우;박범영;서헌덕;이현섭;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제18권6호
    • /
    • pp.521-526
    • /
    • 2005
  • Within wafer non-uniformity(WIWNU) improves as the stiffness of pad decrease. We designed the pad groove to study of pad stiffness on WIWNU in Chemical mechanical polishing(CMP) and measured the pad stiffness according to groove width. The groove influences effective pad stiffness although original mechanical properties of pad are unchanged by grooving. Also, it affects the flow of slurry that has an effect on the lubrication regime and polishing results. An Increase of the apparent contact area of pad by groove width results in decrease of effective pad stiffness. WIWNU and profile of removal tate improved as effective pad stiffness decreased. Because grooving the pad reduce its effective stiffness and it makes slurry distribution to be uniform. Futhermore, it ensures that pad conforms to wafer-scale flatness variability. By grooving the top pad, it is possible to reduce its stiffness and hence reduce WIWNU and edge effect.

Dynamic stiffness based computation of response for framed machine foundations

  • Lakshmanan, N.;Gopalakrishnan, N.;Rama Rao, G.V.;Sathish kumar, K.
    • Geomechanics and Engineering
    • /
    • 제1권2호
    • /
    • pp.121-142
    • /
    • 2009
  • The paper deals with the applications of spectral finite element method to the dynamic analysis of framed foundations supporting high speed machines. Comparative performance of approximate dynamic stiffness methods formulated using static stiffness and lumped or consistent or average mass matrices with the exact spectral finite element for a three dimensional Euler-Bernoulli beam element is presented. The convergence of response computed using mode superposition method with the appropriate dynamic stiffness method as the number of modes increase is illustrated. Frequency proportional discretisation level required for mode superposition and approximate dynamic stiffness methods is outlined. It is reiterated that the results of exact dynamic stiffness method are invariant with reference to the discretisation level. The Eigen-frequencies of the system are evaluated using William-Wittrick algorithm and Sturm number generation in the $LDL^T$ decomposition of the real part of the dynamic stiffness matrix, as they cannot be explicitly evaluated. Major's method for dynamic analysis of machine supporting structures is modified and the plane frames are replaced with springs of exact dynamic stiffness and dynamically flexible longitudinal frames. Results of the analysis are compared with exact values. The possible simplifications that could be introduced for a typical machine induced excitation on a framed structure are illustrated and the developed program is modified to account for dynamic constraint equations with a master slave degree of freedom (DOF) option.

A simplified geometric stiffness in stability analysis of thin-walled structures by the finite element method

  • Senjanovic, Ivo;Vladimir, Nikola;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권3호
    • /
    • pp.313-321
    • /
    • 2012
  • Vibration analysis of a thin-walled structure can be performed with a consistent mass matrix determined by the shape functions of all degrees of freedom (d.o.f.) used for construction of conventional stiffness matrix, or with a lumped mass matrix. In similar way stability of a structure can be analysed with consistent geometric stiffness matrix or geometric stiffness matrix with lumped buckling load, related only to the rotational d.o.f. Recently, the simplified mass matrix is constructed employing shape functions of in-plane displacements for plate deflection. In this paper the same approach is used for construction of simplified geometric stiffness matrix. Beam element, and triangular and rectangular plate element are considered. Application of the new geometric stiffness is illustrated in the case of simply supported beam and square plate. The same problems are solved with consistent and lumped geometric stiffness matrix, and the obtained results are compared with the analytical solution. Also, a combination of simplified and lumped geometric stiffness matrix is analysed in order to increase accuracy of stability analysis.

Effects of Sling Forearm Plank Exercises on Superficial Back Line Muscle Tone and Stiffness

  • Wang, Joongsan
    • 국제물리치료학회지
    • /
    • 제10권1호
    • /
    • pp.1695-1699
    • /
    • 2019
  • Background : Although plank exercises is reported to the changes in muscle activity of the deep muscles and superficial muscles among the core muscles. However, no study has examined the effects of forearm plank exercise on tone and stiffness in the superficial back line muscle. Objective: To compare the effects of sling forearm plank exercises and mat forearm plank exercises on the superficial back line muscle tone and stiffness. Design: Randomized controlled clinical trial (single blind) Methods: The subjects were randomized to sling forearm plank exercise group (N = 8) or mat forearm plank exercise group (N = 8). The measurements were taken for each research group following exercises: the muscle tone and stiffness of upper lumbar muscles, lower lumbar muscles, long head of biceps femoris, and medial part of gastrocnemius among the superficial back line muscles. Results: Sling forearm plank exercise group Indicated statistically significant increases in stiffness of medial part of gastrocnemius (p<.05). However, mat forearm plank exercise group reported no statistically significant in muscle tone and stiffness of all measured muscles. No significant differences in measured variables were found between the groups. Conclusions: These results suggest that the forearm plank exercise performed with an unstable surface in the defined sling can increase the stiffness of calf muscle, but it is unlikely to achieve increases in muscle tone and stiffness of the overall superficial back line muscles.

고유수용성감각 촉진을 위한 나선형 테이핑 방법이 근육 경도 변화에 미치는 즉각적인 효과 (Immediate Effect of the Proprioceptive Spiral Taping Method on Changes in Muscle Stiffness)

  • 양재만
    • PNF and Movement
    • /
    • 제20권3호
    • /
    • pp.321-329
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the immediate effect on the change in muscle stiffness in the common extensor muscle (CEM) when using the spiral taping method to promote proprioception. Methods: There were 18 participants in this study. CEM stiffness was measured using a MyotonePRO device with the subject in a sitting position and according to the proprioceptive neuromuscular facilitation (PNF) arm pattern. Elastic tape was used as the material for the three taping methods employed in the study: kinesiotaping (KT), right spiral taping (RST), and left spiral taping (LST). The taping methods were applied to the wrist extensor muscle with elongation position. Additionally, when performing PNF arm patterns, spiral taping in diagonal and spiral directions was used to promote CEM proprioceptors. The change in CEM stiffness was compared with the initial data values. Results: The results of this study were obtained by comparing and measuring changes in CEM stiffness using three different tapings. It was found that the stiffness change of the CEM was significant compared to the initial value, and the increase in stiffness of the CEM after RST application was also significant. Conclusion: The results of this study show that by affecting the strength and activation of the extensor muscle, taping performed through the RST method had the most positive effect on the change in CEM stiffness.