• Title/Summary/Keyword: stiffness and ductility

Search Result 568, Processing Time 0.02 seconds

Behavior of L-shaped double-skin composite walls under compression and biaxial bending

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xingyu;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.405-418
    • /
    • 2020
  • The application of double-skin composite wall should meet different layout plans. However, most available research focused on the rectangular section with uniform axial compression. In this research, the structural behavior of double-skin composite wall with L section was studied. Due to the unsymmetric geometric characteristics, the considered loading condition combined the axial compression and biaxial bending. Five specimens were designed and tested under eccentric compression. The variables in the test included the width of the web wall, the truss spacing, the thickness of the steel faceplate, and the thickness of the web wall. The test results were discussed in terms of the load-displacement responses, buckling behavior, stiffness, ductility, strength utilization, strain distribution. Two modern codes were employed to predict the interaction between the axial compression and the biaxial bending. The method to calculate the available bending moment along the two directions was proposed. It was found that CECS 159:2004 offers more suitable results than AISC 360.

Behavior of circular concrete-filled steel tubular columns under pure torsion

  • Ding, Fa-xing;Fu, Qiang;Wen, Bing;Zhou, Qi-shi;Liu, Xue-mei
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.501-511
    • /
    • 2018
  • Concrete-filled steel tubular (CFT) columns are commonly used in engineering structures and always subjected to torsion in practice. This paper is thus devoted to investigate the mechanical behavior of circular CFT columns under pure torsion.3D finite element models based on reasonable material constitutive relation were established for analyzing the load-strain ($T-{\gamma}$) curves of circular CFT columns under pure torsion. The numerical simulation indicated that local bulking of the steel tube in CFT columns was prevented and the shear strength and ductility of the core concrete were significantly improved due to the confinement effect between the steel tube and the core concrete. Based on the results, formulas to predict the torsional ultimate bearing capacity of circular CFT columns were proposed with satisfactory correspondence with experimental results. Besides, formulas of composite shear stiffness and the overall process of the $T-{\gamma}$ relation of circular CFT columns under pure torsion were proposed.

Seismic damage estimation through measurable dynamic characteristics

  • Lakshmanan, N.;Raghuprasad, B.K.;Muthumani, K.;Gopalakrishnan, N.;Sreekala, R.
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.167-186
    • /
    • 2007
  • Ductility based design of reinforced concrete structures implicitly assumes certain damage under the action of a design basis earthquake. The damage undergone by a structure needs to be quantified, so as to assess the post-seismic reparability and functionality of the structure. The paper presents an analytical method of quantification and location of seismic damage, through system identification methods. It may be noted that soft ground storied buildings are the major casualties in any earthquake and hence the example structure is a soft or weak first storied one, whose seismic response and temporal variation of damage are computed using a non-linear dynamic analysis program (IDARC) and compared with a normal structure. Time period based damage identification model is used and suitably calibrated with classic damage models. Regenerated stiffness of the three degrees of freedom model (for the three storied frame) is used to locate the damage, both on-line as well as after the seismic event. Multi resolution analysis using wavelets is also used for localized damage identification for soft storey columns.

Nonlinear Finite Element Analysis on the Transmission of Column Loads through Slab-Column Connections

  • Lee, Joo-Ha;Yoon, Young-Soo;Sohn, Yu-Shin;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.466-469
    • /
    • 2006
  • This paper presents the structural characteristics of slab-column connections by using nonlinear finite element analysis. FEA considering material non-linearity was performed to investigate average column strain, failure mode, principal stress distribution, and steel yielding conditions for various slab-column members. In addition, to investigate alternative methods for improving the strength of interior column-slab joints, some specimens were provided with different reinforcing types of high-strength concrete puddling, high-strength column longitudinal steels, dowel bars, and high-strength concrete core. To make certain of the reliability of the analytical program, analysis results for concrete material model developed and two specimens with and without puddling were compared with experimental results. It was found that providing the alternative reinforcing methods in the slab-column joint results in a significant improvement in performance. This includes an increase in the axial compressive strength, greater loading stiffness, and ductility.

  • PDF

Numerical Column Model for Damaged Non-ductile Reinforced Concrete Frame Repaired Using FRP Jacketing System (초기 손상을 입은 비연성 철근콘크리트 골조의 FRP재킷으로 보수된 기둥의 수치해석모델)

  • Shin, Jiuk;Jeon, Jong-Su;Kim, JunHee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.291-298
    • /
    • 2018
  • Existing reinforced concrete building structures have seismic vulnerabilities under successive earthquakes (or mainshock-aftershock sequences) due to their inadequate column detailing, which leads to shear failure in the columns. To improve the shear capacity and ductility of the shear-critical columns, a fiber-reinforced polymer jacketing system has been widely used for seismic retrofit and repair. This study proposed a numerical modeling technique for damaged reinforced concrete columns repaired using the fiber-reinforced polymer jacketing system and validated the numerical responses with past experimental results. The column model well captured the experimental results in terms of lateral forces, stiffness, energy dissipation and failure modes. The proposed column modeling method enables to predict post-repair effects on structures initially damaged by mainshock.

Retrofitting by adhesive bonding steel plates to the sides of R.C. beams. Part 1: Debonding of plates due to flexure

  • Oehlers, Deric. J.;Nguyen, Ninh T.;Bradford, Mark A.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.5
    • /
    • pp.491-504
    • /
    • 2000
  • A convenient method for enhancing the strength and stiffness of existing reinforced concrete beams is to bond adhesively steel plates to their tension faces. However, there is a limit to the applicability of tension face plating as the tension face plates are prone to premature debonding and, furthermore, the addition of the plate reduces the ductility of the beam. An alternative approach to tension face plating is to bond adhesively steel plates to the sides of reinforced concrete beams, as side plates are less prone to debonding and can allow the beam to remain ductile. Debonding at the ends of the side plates due to flexural forces, that is flexural peeling, is studied in this paper. A fundamental mathematical model for flexural peeling is developed, which is calibrated experimentally to produce design rules for preventing premature debonding of the plate-ends due to flexural forces. In the companion paper, the effect of shear forces on flexural peeling is quantified to produce design rules that are applied to the strengthening and stiffening of continuous reinforced concrete beams.

Local and global buckling condition of all-steel buckling restrained braces

  • Mirtaheri, Seyed Masoud;Nazeryan, Meissam;Bahrani, Mohammad Kazem;Nooralizadeh, Amin;Montazerian, Leila;Naserifard, Mohamadhosein
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.217-228
    • /
    • 2017
  • Braces are one of the retrofitting systems of structure under earthquake loading. Buckling restrained braces (BRBs) are one of the very efficient braces for lateral loads. One of the key needs for a desirable and acceptable behavior of buckling-restraining brace members under intensive loading is that it prevents total buckling until the bracing member tolerates enough plastic deformation and ductility. This paper presents the results of a set of analysis by finite element method on buckling restrained braces in which the filler materials within the restraining member have been removed. These braces contain core as the conventional BRBs, but they have a different buckling restrained system. The purpose of this analysis is conducting a parametric study on various empty spaces between core and restraining member, the effect of friction between core and restraining member and applying initial deformation to brace system to investigate the global buckling behavior of these braces. The results of analysis indicate that the flexural stiffness of restraining member, regardless of the amount of empty space, can influence the global buckling behavior of brace significantly.

Micro-concrete composites for strengthening of RC frame made of recycled aggregate concrete

  • Marthong, Comingstarful;Pyrbot, Risukka N.;Tron, Stevenly L.;Mawroh, Lam-I D.;Choudhury, Md. Sakil A.;Bharti, Ganesh S.
    • Computers and Concrete
    • /
    • v.22 no.5
    • /
    • pp.461-468
    • /
    • 2018
  • In this paper, to access the suitability of recycled aggregate for structural applications, concrete strength i.e., compressive, tensile and flexural strength were evaluated and compared with those specimens made of natural aggregates. Test results indicated that 30 to 42% of the mentioned strength decreases. To study the performance of frame structures made of recycled aggregate concrete (RAC) two reinforced RAC frames were prepared and tested under monotonic loading. The joint regions of one of the RAC frame were casted with micro-concrete. A reference specimen was also prepared using natural aggregate concrete (NAC) and subjected to a similar loading condition. The RAC frame resulted in a brittle mode of failure as compared to NAC frame. However, the presence of a micro-concrete at the joint region of an RAC frame improved the damage tolerance and load resisting capacity. Seismic parameter such as energy dissipation, ductility and stiffness also improves. Conclusively, strengthening of joint region using micro-concrete is found to have a significant contribution in improving the seismic performance of an RAC frame.

Experimental Investigation of The Lateral Retrofitting Effect of FRP Sheet and Buckling-restrained Braces for Beam-Column Joints (FRP Sheet와 비좌굴 가새를 적용한 보-기둥 접합부의 횡방향 보강효과에 관한 실험적 연구)

  • Byon, Eun-Hyuk;Kim, Min-Sook;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • The strengthening effect of CFRP sheet and AFRP sheet with buckling-restrained brace for Beam-Column joints under constant axial and cyclic lateral loading is evaluated experimentally in this paper. Six test specimens were constructed. The main test parameters included the FRP Sheet and Buckling-restrained braces. The results of the tests were analyzed by focusing on their mode of failure, maximum load, ductility indexes, and energy dissipation capacity. Test results indicated that CFRP Sheet with the buckling-restrained brace system significantly increased the strength and stiffness of the specimen and that it was the most adequate retrofitting method.

Improving the hysteretic behavior of Concentrically Braced Frame (CBF) by a proposed shear damper

  • Ghamari, Ali;Haeri, Hadi;Khaloo, Alireza;Zhu, Zheming
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.383-392
    • /
    • 2019
  • Passive steel dampers have shown favorable performance in last earthquakes, numerical and experimental studies. Although steel dampers are more affordable than other types of damper, they are not economically justified for ordinary buildings. Therefore, in this paper, an innovative steel damper with shear yielding mechanism is introduced, which is easy to fabricate also can be easily replaced after sever earthquakes. The main goal of implementing such a mechanism is to control the possible damage in the damper and to ensure the elastic behavior of other structural components. The numerical results indicate an enhancement of the hysteretic behavior of the concentrically braced frames utilizing the proposed damper. The proposed damper change brittle behavior of brace due to buckling to ductile behavior due to shear yielding in proposed damper. The necessary relations for the design of this damper have been presented. In addition, a model has been presented to estimate load-displacement of the damper without needing to finite element modeling.