• Title/Summary/Keyword: stiffness and ductility

Search Result 568, Processing Time 0.019 seconds

Mechanical properties of concrete beams reinforced with CFRP prestressed prisms under reverse cyclic loading

  • Liang, Jiongfeng;Yu, Deng;Wang, Jianbao;Yi, Pinghua
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.315-326
    • /
    • 2016
  • This paper presents the results of cyclic loading tests on concrete beams reinforced with various reinforcement, including ordinary steel bars, CFRP bars and CFRP prestressed concrete prisms(PCP). The main variable in the test program was the level of prestress and the cross section of PCP. The seismic performance indexes including hysteretic loops, skeleton curve, ductility, energy dissipation capacity and stiffness degradation were analyzed. The results show that the CFRP prestressed concrete prisms as flexural reinforcement of concrete beams has good seismic performance. And the ductility and the energy dissipation capacity were good, the hysteresis loops were full and had large area.

Retrofitting reinforced concrete beams by bolting steel plates to their sides -Part 1: Behaviour and experiments

  • Ahmed, Marfique;Oehlers, Deric John;Bradford, Mark Andrew
    • Structural Engineering and Mechanics
    • /
    • v.10 no.3
    • /
    • pp.211-226
    • /
    • 2000
  • A procedure has been developed for bolting steel plates to the sides of existing reinforced concrete beams which can be used to increase the shear strength of beams, increase the flexural strength of beams with enhanced ductility or with only a small loss of ductility, and increase the stiffness of beams in order to reduce deflections and crack widths. It will be shown in this paper, through a qualitative analysis and through the results of testing eight large scale beams, that standard rigid plastic analysis techniques which are commonly used in the design of reinforced-concrete, steel, and composite steel and concrete beams cannot be used directly to design composite bolted-plated reinforced-concrete beams. In the companion paper, quantitative procedures will be used to adapt the standard rigid plastic analysis techniques for this relatively new form of retrofitting.

Seismic performance of RCS beam-column joints using fiber reinforced concrete

  • Nguyen, Xuan Huy;Le, Dang Dung;Nguyen, Quang-Huy;Nguyen, Hoang Quan
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.599-607
    • /
    • 2020
  • This paper deals with the experimental investigation on the behavior of RCS beam-column exterior joints. Two full-scale specimens of joints between reinforced concrete columns and steel beams are tested under cyclic loading. The objective of the test is to study the effect of steel fiber reinforced concrete (SFRC) on the seismic behavior of RCS joints. The load bearing capacity, story drift capacity, ductility, energy dissipation, and stiffness degradation of specimens are evaluated. The experimental results point out that the FRC joint is increased 20% of load carrying capacity and 30% of energy dissipation capacity in comparison with the RC joint. Besides, the FRC joint shown lower damage and better ductility than RC joint.

Strength and stiffness modeling of extended endplate connections with circular and rectangular bolt configurations

  • Hantouche, Elie G.;Mouannes, Elie N.
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.323-352
    • /
    • 2016
  • The results of a series of finite element (FE) simulations and experimental studies are used to develop strength and stiffness models that predict the failure capacity and response characteristics of unstiffened extended endplate connections with circular and rectangular bolt configurations associated with deep girders. The proposed stiffness models are composed of multi-linear springs which model the overall extended endplate/column flange system deformation and strength of key-components. Comparison of model predictions with FE and experimental results available in the literature show that the proposed models accurately predict the strength and the response of extended endplate/column system with circular and rectangular bolt configurations. The effect of the bolt configuration (circular and rectangular) on the prying phenomenon encountered in the unstiffened extended endplate/column system was investigated. Based on FE results, extended endplate with circular bolt configuration has a more ductile behavior and exhibits higher total prying forces. The proposed models can be used to design connections that cover all possible failure modes for extended endplate with circular bolt configuration. This study provides guidelines for engineers to account for the additional forces induced in the tension bolts and for the maximum rotational capacity demand in the connection which are required for seismic analysis and design.

Flexural performance of FRP-reinforced concrete encased steel composite beams

  • Kara, Ilker Fatih
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.775-793
    • /
    • 2016
  • This paper presents a numerical method for estimating the curvature, deflection and moment capacity of FRP-reinforced concrete encased steel composite beams (FRP-RCS). A sectional analysis is first carried out to predict the moment-curvature relationship from which beam deflection and moment capacity are then calculated. Comparisons between theoretical and experimental results of tests conducted elsewhere show that the proposed numerical technique can accurately predict moment capacity and deflection of FRP-RCS composite beam. The numerical results also indicated that beam ductility and stiffness are improved when encased steel is added to FRP reinforced concrete beams. ACI, ISIS and Bischoff models for deflection prediction compared well at low load, however, significantly underestimated the experimental results for high load levels.

Polymer concrete filled circular steel beams subjected to pure bending

  • Oyawa, Walter O.;Sugiura, Kunitomo;Watanabe, Eiichi
    • Steel and Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.265-280
    • /
    • 2004
  • In view of the mounting cost of rehabilitating deteriorating infrastructure, further compounded by intensified environmental concerns, it is now obvious that the evolvement and application of advanced composite structural materials to complement conventional construction materials is a necessity for sustainable construction. This study seeks alternative fill materials (polymer-based) to the much-limited cement concrete used in concrete-filled steel tubular structures. Polymers have been successfully used in other industries and are known to be much lighter, possess high tensile strength, durable and resistant to aggressive environments. Findings of this study relating to elasto-plastic characteristics of polymer concrete filled steel composite beams subjected to uniform bending highlight the enormous increase in stiffness, strength and ductility of the composite beams, over the empty steel tube. Moreover, polymer based materials were noted to present a wide array of properties that could be tailored to meet specific design requirements e.g., ductility based design or strength based design. Analytical formulations for design are also considered.

The Study on the Structural Behavior of Concrete-filled Composite Piers (콘크리트충전 강합성 교각의 구조적 거동에 관한 연구)

  • 김유경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.151-158
    • /
    • 2000
  • In this paper, It is presented that concrete-filled composite piers have large energy-absorption capacity and high strength and stiffness on account of mutual confinement between the steel plate and filled-in concrete. Concrete-filled composite columns were tested to failure under axial compression and cyclic lateral loading. Displacement ductility index obtained by using the load-displacement relation has been increased with the increment of filled-in concrete length, while it has been decreased according to the incrementation of width-thickness ratio, slenderness ratio and the number of loading cycles. Structural behavior and ductility index estimated for the seismic design showed that composite piers could be used as a very efficient earthquake-resistant structural member. The response modification factor could be re-evaluated for concrete-filled composite piers.

  • PDF

Flexural Behavior of RC Slabs Strengthened with FRP (FRP 보강 철근콘크리트 슬래브의 휨 거동)

  • 박홍용
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.103-114
    • /
    • 2000
  • Recently, the need for strengthening reinforced concrete and prestressed concrete structure is increasing, particularly when there is an increase in load requirements, a change in use, a degradation problem, or some design/construction defects. Therefore, use of composite materials for structural repair presents several advantages and has been investigated all over the world. In this paper, the reinforced concrete slabs with epoxy - bonded AFRP sheed were experimentally investigated. Experimental data on strength. stiffness, material strain, deflection and mode of failure of strengthened slabs were obtained, and comparisons between the different flexural reinforcing schemes and reinforced concrete slabs without AFRP sheets were made It can be concluded that flexural strength of RC slabs strengthened with AFRP has increased, and that ductility of strengthened slabs has decreased.

Seismic Performance Evaluation of Existing RC Bridge Piers by Pseudo Dynamic Test (유사동적 실험에 의한 기존 RC 교각의 내진성능 평가)

  • 박종협
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.364-371
    • /
    • 2000
  • The pseudo dynamic test has been carried out so as to investigate the seismic performance of RC bridge piers strengthened with and without glass fiber sheets. The Lessons from severe demage of many infrastructures in Kobe(1995) and Northridge(1996) earthquakes have emphasized the need to develop the retrofit measures to enhance flexural strength, ductility and shear strength of RC bridge piers nonseismically designed before 1992. Therefore, the objective of this experimental research is to investigate the seismic behavior of circular reinforced concrete bridge piers by the pseudo dynamic test. and then to enhance the ductility of concrete piers strengthening with glass fiber sheets in the plastic hinge region. 7 circular RC bridge piers were made in a 1/3.4 scale. Important test parameters are confinement steel ratio, retrofitting. load pattern, etc. The seismic behavior of circular concrete piers under artificial ground motions has been evaluated through strength and stiffness degradation, energy dissipation. It can be concluded that existing bridge piers wrapped with glass fibers in the plastic hinge regions could have enough seismic performance.

  • PDF

An experiment on compressive profile of the unstiffened steel plate-concrete structures under compression loading

  • Choi, Byong Jeong;Han, Hong Soo
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.519-534
    • /
    • 2009
  • This study intends to examine the characteristics of compressive behavior and conducts comparative analysis between normal compressive strength under existing equations (LRFD, ACI 318, EC 4) and experimental the maximum compressive strength from the compression experiment for the unstiffened steel plate-concrete structures. The six specimens were made to evaluate the constraining factor (${\xi}$) and width ratio (${\beta}$) effects subjected to the compressive monotonic loading. Based on this experiments, the following conclusions could be made: first, compressive behaviors of the specimens from the finite element analysis closely agreed with the ones from the actual experiments; second, the higher the width ratio (${\beta}$) was, the lower the ductility index (DI) was; and third, the test results showed the maximum compressive strength with a margin by 7% compared to the existing codes.